Translation Validation using Path Based
Equivalence Checkers Augmented with
SMT Solvers

Kunal Banerjee

Dept of Computer Sc & Engg
[IT Kharagpur

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 1/23

e —
Outline

© Background
@ Translation validation
@ Path based equivalence checkers
@ SMT solvers

© Normalization technique

© Deploying SMT solvers

@ Experimental results

© Conclusion and future works

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 2/23

Outline

© Background
@ Translation validation
@ Path based equivalence checkers
@ SMT solvers

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014

July 29, 2014

@

3/23

Background

Program: An organized list of instructions that, when executed, causes
the computer to behave in a predetermined manner.
(source: webopedia.com)

@

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 3/23

webopedia.com

Background

Program: An organized list of instructions that, when executed, causes
the computer to behave in a predetermined manner.
(source: webopedia.com)

We are not always happy with the programs we write.

Objectives of program optimization:
@ To speed-up the computation

@ To use less resource, eg. memory, power, etc.

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 3/23

webopedia.com

Background

Program: An organized list of instructions that, when executed, causes
the computer to behave in a predetermined manner.
(source: webopedia.com)

We are not always happy with the programs we write.

Objectives of program optimization:
@ To speed-up the computation

@ To use less resource, eg. memory, power, etc.

So, we need a compiler.

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 3/23

webopedia.com

Can you trust your compiler?

Erroneous loop reversal

sum = 0; sum = 0;

for (i=0; i<N; i++) { for (i=N; i>=0; i--) {
sum = sum + al[i]; sum = sum + al[i];

} } /* a[N] gets accessed */

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 4/23

Can you trust your compiler?

Erroneous loop reversal

sum = 0; sum = 0;

for (i=0; i<N; i++) { for (i=N; i>=0; i--) {
sum = sum + al[i]; sum = sum + al[i];

} } /* a[N] gets accessed */

Program: An organized list of instructions that, when executed, causes
the computer to behave in a | predetermined manner‘.

A faulty compiler can alter the meaning of a program.

@

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 4/23

What is the remedy?

o Verified Compiler — All optimized programs will be correct by
construction.
Example: CompCert, INRIA

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014

5/23

What is the remedy?

o Verified Compiler — All optimized programs will be correct by
construction.
Example: CompCert, INRIA
Limitations:

o Very hard to formally verify all passes of a compiler.
o Undecidability of the general problem of program verification restricts
the scope of the input language supported by the verified compiler.

@

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 5/23

What is the remedy?

o Verified Compiler — All optimized programs will be correct by
construction.
Example: CompCert, INRIA
Limitations:
o Very hard to formally verify all passes of a compiler.
o Undecidability of the general problem of program verification restricts
the scope of the input language supported by the verified compiler.

@ Translation Validation — Each individual translation is followed by a
validation phase which verifies that the target code produced correctly
implements the source code.

(This is what we do, i.e., equivalence checking of programs.)

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 5/23

How to verify programs?

Break a program into smaller chunks — cut loops.

Representing a program using CDFG

q1,1

y = 10; Y <20y «y+1 —/y<10,z<1
z := 1;
while (y < 20) { q1,3 q1,2

y =y + 1;

z =y X z; —/z<yXz —/x <=z
} q1,4
X 1= Z;

All computations of the program can be viewed as a concatenation of
paths.

Example: p1.p3, p1.p2.p3, p1-p2.P2-p3, p1.(p2)*.p3 i
FM Update Meeting 2014 July 29, 2014 6/23

Path based equivalence checkers
Finite State Machine with Datapath (FSMD)

FSMDs effectively capture both the control flow and the associated data
processing of a behaviour.

The FSMD model is a seven tuple F = (Q, qo, !, V, O, f, h):
Finite set of control states

Reset state, i.e. qo € Q

Set of input variables

Set of storage variables

Set of output variables

State transition function, i.e. Q x 2° — Q

>0 <8 0

Update function of the output and the storage variables, i.e.
Qx2°5 U
@ U represents a set of storage or output assignments
@ S is a set of arithmetic relations between arithmetic @
expressions

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 7/23

Equivalence checking of FSMDs: A basic example

—/a<=b+c

qo,1
—/d<=a—e
q0,2
x<y/ Ix<y/
x<=x+y x<=x—d
—/t<=x+f

qo,4
—/- —/m<<t—d

90,5
—/h<=r+m

40,6

(a)Mo

K Banerjee et al (IIT Kharagpur)

Any computation in an FSMD can be represented
by a concatenation of its computation paths

A path is an alternating sequence of states and
transitions, starting and ending at cutpoints

Identification of suitable cutpoints and the path
segments between them leads to a finite path cover
Po in Mo

For an FSMD, the reset state and all states with

multiple incoming/outgoing transitions can be
considered as the cutpoints

Length and number of computations of an FSMD
can both be infinite

Since any computation corresponds to a
concatenation of paths, it is enough to establish

path equivalences @

FM Update Meeting 2014 July 29, 2014 8/23

Background

Equivalence checking of FSMDs:

—/a<b+c

q0,1
—/d<a—e

x<y/
X=Xty

Ix<y/
x<=x—d
—/t<=x+f

qo,4
—/m<t—d

—/-
90,5
—/h<=r+m

40,6

(a)Mo

K Banerjee et al (IIT Kharagpur)

—/a<=b+c
qi,1

x<y/
X<=Xx+Yy,

dea—e of —/x<=x—d

q1,2

q1,3

—/t<=x+f,
n<r—d

—/-
q1,4
—/h<=t+n

q15

(b)My

FM Update Meeting 2014

Path based equivalence checkers

A basic example

Ix<y/d<=a—e

Two FSMDs My and M;
are equivalent if for every
path in Py there is an
equivalent path in P;
and vice versa

Code transformations
can make this job
difficult

Paths may be extended,
and the path covers are
updated accordingly

x<y x<y
{90,0 == q03 ~ q1,0 =
Ix<y
d1,3, 90,0 — 40,3 =
Ix<y
q1,0 — 41,3, 90,3 —
§o,0 ™~ q1,3 = q1,0}

@

July 29, 2014 9/23

SMT solvers

SMT: Satisfiability Modulo Theories

The SMT problem is a decision problem for logical formulas with respect
to combinations of background theories expressed in classical first-order
logic with equality.

(source: wikipedia.org)

Example: 3x +2y >4, x,y € N

SMT solvers used in this work: CVC4, Yices2, Z3
Other SMT solvers: Beaver, Boolector, MiniSmt, SONOLAR

@

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 10 / 23

wikipedia.org

)
Outline

© Normalization technique

@

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 11 /23

How to establish equivalence of expressions?

X+YZ=X+XY.Z+XY.Z?

FM Update Meeting 2014 July 29, 2014 11 /23

How to establish equivalence of expressions?

X+YZ=X+XY.Z+XY.Z?

Convert both expressions into sum-of-minterms

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014

11/ 23

How to establish equivalence of expressions?

X+YZ=X+XY.Z+XY.Z?

Convert both expressions into sum-of-minterms

X(Y+Y)(Z+2)+Y.Z(X+X)=
X(Y+Y)(Z4+2)+X.Y.Z+XY.Z?

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014

11/ 23

How to establish equivalence of expressions?

X+YZ=X+XY.Z+XY.Z?

Convert both expressions into sum-of-minterms

X(Y+Y)(Z+2)+Y.Z(X+.
X(Y+Y)(Z+2)+ XY
XY +X(Z+2)+Y.ZX+

)E
Z+XY.Z?
(XY +XYV)(Z+2)+X.

Y.Z.)_(_E_
YZ+XY.Z?

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014

11/ 23

Normalization technique Equivalence of expressions

How to establish equivalence of expressions?

X+YZ=X+XY.Z+XY.Z?
Convert both expressions into sum-of-minterms
X(Y+Y)(Z+2)+Y.Z(X+X)=
X(Y+Y)(Z+2)+XYZ+XY.Z?

(XY +XY)(Z+2)+Y.ZX+Y.ZX=
XY +X)(Z+2)+XY.Z+X

Z
XYZAXYZ+XYZ+XY.Z+XY.Z+
XY Z+XYZ+XY.Z+XY.Z+X.

?

Y.
Z 7

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014

11/ 23

Normalization technique Equivalence of expressions

How to establish equivalence of expressions?

X+YZ=X+XY.Z+XY.Z?
Convert both expressions into sum-of-minterms

X(Y+Y)(Z+2)+Y.Z(X+X)=
X(Y+Y)(Z+2Z)+XY.Z+XY.Z?

(XY +XY)(Z+2)+Y.ZX+Y.ZX=_
XY +XN(Z+2)+XY.Z+XY.Z?

XYZAXYZ+XYZ+XY.Z+XY.Z+X.
XY Z+XYZ+XY.Z+XY.Z+X.Y.

XYZ+XYZ+XYZ+XY.Z+XY.Z=

XY Z+XYZ+XYZ+XYZ+XY.Z

'\l~<|

Z
?

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014

11/ 23

Normalization technique Equivalence of expressions

How to establish equivalence of expressions?

X+YZ=X+XY.Z+XY.Z?
Convert both expressions into sum-of-minterms

X(Y+Y)(Z+2)+Y.Z(X+X)=
X(Y+Y)(Z+2Z)+XY.Z+XY.Z?

(XY +XY)(Z+2)+Y.ZX+Y.ZX=_
XY +XN(Z+2)+XY.Z+XY.Z?

XYZAXYZ+XYZ+XY.Z+XY.Z+X.
XY Z+XYZ+XY.Z+XY.Z+X.Y.

XYZ+XYZ+XYZ+XY.Z+XY.Z=

XY Z+XYZ+XYZ+XYZ+XY.Z

'\l~<|

Z
?

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014

11/ 23

A normalization technique for integers

No canonical representation exists for expressions over integers.

Structure of a normalized cell

typedef struct normalized_cell NC; list
struct normalized_cell { type
NC *list; inc
char type; link
int inc;
NC *1link;
}s |
Proposed by J. C. King, “A Program Verifier,” PhD thesis,
Carnegie-Mellon University, 1969. @

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 12 /23

Normalization technique Normalization grammar

An example of normalized expression over integers

Expression: 1 x y x z+2 x z+ 15

)
15
Symbols
Loc Var
y 10
z 20 T T
1 2
v v v
10 20 20

Normalization can show that this expression is equivalent to
z4+zxy+2z+4+20-5.

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014

13 /23

Normalization grammar

Grammar
1) S — S+ T | cs, where ¢ is an integer.
2) T — T % P | ¢, where ¢; is an integer.
3) P—abs(S) | (S)mod(S) | S+ Cq | v | cp,
where v € UV, and ¢, is an integer.
4) Cqg—S+Cy | S.

Some simplification rules for integers are given in [TCADOS].
This grammar is latter applied on reals also in [TODAES12].

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 14 / 23

Normalization technique Limitations of normalization

Limitations of the normalization method

An example where normalization fails

if(Ca!=b) { ifCa !=b) {
n := axa - 2xXaXxb + bxb; X :=a - b;
d := a - b; }

x :=n / d;

}

@ The normalization technique resolves equivalence of expressions by
reducing them to the same syntactical structure and does not actually
solve the expressions by substituting for variables.

@ The normalization technique does not account for bit-vectors and
user-defined datatypes.

@

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 15 /23

Outline

© Deploying SMT solvers

@

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 16 / 23

Deploying SMT solvers Single assignment form

Single assignment form: A prerequisite for SMT
Solvers

An example to highlight single assignment form

S1: x := a + b; x 0 := a + b; ASSERT x.0 = a + b;

S2: x := X + c; x.1 := x0 + c; ASSERT x_1 = x.0 + c;

S3: y :=x + d; y :=x1 + d; ASSERT y = x.1 + d;
(a) (b) (c)

@ The order of execution of the statements is not captured by the
ordering of the assert statements.

@ Programs in single assignment form help in producing assert
statements whose ordering is irrelevant, that is, they can be arranged
in any order to produce the same effect.

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 16 / 23

Deploying SMT solvers Formula generation for SMT solvers

Formula generation for SMT solvers

—/x0<y+a, —/x0 < y+ b,
t < 40.02 + 10.6
ds,2 qi2
z>t/ —(z>t)/ z > 50.62/ —(z > 50.62)/
x1<=x0+b x2=x0+c x1l<=x0+a x2<«<y+a+c
4s,3 qs,4 qi3 qi,a
(a)Ms (b)M;

Here, we have considered the path based equivalence checker of [ISED12].

@

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 17 /23

Formula generation for SMT solvers
Formula generation for SMT solvers

—/x0<y+a, —/x0 < y+ b,
t < 40.02 + 10.6

z>t/ -(z>1t)/ z>50.62/ —(z > 50.62)/
x1<=x0+b x2=x0+c x1l<=x0+a x2<«<y+a+c
4s,3 qs,4 qi3 qi,a
(a)Ms (b)M;

Encoding in CVC4 input language

y-s:INT; a_s:INT; x_O_s:INT; t_s:REAL;

y-i:INT; b_i:INT; x_0_i:INT;

ASSERT y_s = y_i;

ASSERT x 0_s = y_s+a_s; ASSERT t_s = 40.02 + 10.6;
ASSERT x.0_1 = y_i + b_i;

QUERY x 0_s = x.0_i;

Output: invalid (need to look beyond this basic block)

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 17 /23

Deploying SMT solvers Formula generation for SMT solvers

Formula generation for SMT solvers

gs,1 gi1

—/x0<y+a, —/x0 < y+ b,
t < 40.02 + 10.6

1‘75,2' qi2

z>t/ ~(z>1t)/ z>50.62/ —(z > 50.62)/
x1<=x0+b x2=x0+c x1l<=x0+a x2<«<y+a+c
@ qs,4 @ qi,4
(a)Ms (b)M;

Encoding in CVC4 input language (appended with the previous one)

z_s:REAL; cond_s:BOOLEAN;
z_i:REAL; cond_i:BOOLEAN;
ASSERT z_s = z_i;

ASSERT cond.-s = z_s > t_s;
ASSERT cond_i = z_i > 50.62;
QUERY cond_s = cond._i;

Output: valid (these two branches run in synchrony) @

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 17 /23

Deploying SMT solvers Formula generation for SMT solvers

Formula generation for SMT solvers

gs,1 gi1

—/x0<y+a, —/x0 < y+ b,
t < 40.02 + 10.6

1‘75,2' qi2

z>t/ ~(z>1t)/ z>50.62/ —(z > 50.62)/
x1<=x0+b x2=x0+c x1l<=x0+a x2<«<y+a+c
@ qs,4 @ qi,4
(a)Ms (b)M;

Encoding in CVC4 input language (appended with the earlier one)

b_s:INT; x_1_s:INT;

a_i:INT; x_1_i:INT;

ASSERT a_s = a_i; ASSERT b_s = b_i;
ASSERT x_1.s = x.0_s + b_s;

ASSERT x-1.i = x.0_.i + a-i;

QUERY x_1.s = x_1.i;

Output: valid (the computations match at states gs 3 and gj 3) @

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 17 /23

Deploying SMT solvers Formula generation for SMT solvers

Formula generation for SMT solvers

gs,1 gi1

—/x0<y+a, —/x0 < y+ b,
t < 40.02 + 10.6

1‘75,2' qi2

z>t/ ~(z>1t)/ z>50.62/ —(z > 50.62)/
x1<=x0+b x2=x0+c x1l<=x0+a x2<«<y+a+c
gs,3 @ qi3 @
(a)Ms (b)M;

Encoding in CVC4 input language (appended with the earliest one)

z_s:REAL; cond_s:BOOLEAN;
z_i:REAL; cond_i:BOOLEAN;
ASSERT z_s = z_i;

ASSERT cond_s = z_s <= t_s;
ASSERT cond-i = z_i <= 50.62;
QUERY cond_s = cond._i;

Output: valid (these two branches run in synchrony) @

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 17 /23

Deploying SMT solvers Formula generation for SMT solvers

Formula generation for SMT solvers

gs,1 gi1

—/x0<y+a, —/x0 < y+ b,
t < 40.02 + 10.6

1‘75,2' 1‘71’,2’

z>t/ ~(z>1t)/ z>50.62/ —(z > 50.62)/
x1<=x0+b x2=x0+c x1l<=x0+a x2<«<y+a+c
gs,3 @ qi3 @

(a)Ms (b)M;

Encoding in CVC4 input language (appended with the earliest one)

c_s:INT; x_2_s:INT;

a_i:INT; c_i:INT; x_2_i:INT;

ASSERT a_s = a_i; ASSERT b_s = b_i; ASSERT c_s = c_i;
ASSERT x.2.s = x.0_s + c_s;

ASSERT x.2.i = y.i + a_i + c.i;

QUERY x.2.s = x 2.1i;
Output: valid (the computations match at states gs 4 and gj4) @

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 17 /23

Formula generation for SMT solvers
Revisiting the example where normalization fails

An example where normalization fails

if(a !=b) { if(a !=b) {
n := axXa - 2Xaxb + bXb; X :=a - b;
d := a - b; }

x :=n / d;

}

Encoding in SMT2 input language

(declare-const a_s Real) (declare-const b_s Real) (declare-const n_s Real)
(declare-const d_s Real) (declare-const x_s Real)

(declare-const a_i Real) (declare-const b_i Real) (declare-const x.i Real)
(assert (= a_s a_i)) (assert (= b_s b_i))

(assert (not (= a_s b_s)))

(assert (=ns (+ (- (x as as)(* 2 as b_s)) (*x b_s b_s))))

(assert (= d.s (- a_s b_s))) (assert (= x.s (/ n_s d.s)))

(assert (not (= a_i b_i))) (assert (= x_i (- a_i b_i)))

(assert (not (= x_.s x.i)))

(check-sat)

V.

Output of Z3: unsat
K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 18 / 23

Bit-vectors and user-defined datatypes
Modeling bit-vectors and user-defined datatypes

Bit-vector example for Z3: DeMorgan’s law

(declare-const x (- BitVec 64))

(declare-const y (. BitVec 64))

(assert (not (= (bvand (bvnot x) (bvnot y)) (bvnot (bvor x y)))))
(check-sat)

Declaring user-defined datatype in CVC4

struct recordType { recordType: TYPE = [#
_Bool flag; flag:BOOLEAN,
double r; r:REAL,
int i; i:INT

+s #1;

v

@

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 19 /23

.
Outline

@ Experimental results

@

FM Update Meeting 2014 July 29, 2014 20 / 23

Experimental results

Table: Results for our method on different benchmarks

Benchmarks Benchmark Characteristics Formulae Execution Time (ms)
#op|#BB|#if|#loop|#path|#state, | #states || #assert|#query||Norm|Yices2| CVC4| Z3
DCT 42 1 0 0 1 43 12 92 8 32 54| 52| 42
DIFFEQ 20 31 0 1 3 18 11 67 10 13| NLA| 38| 39
EWF 52 1} 0 0 1 30 19 113 8 63| NLA| 285|161
PERFECT 12 6| 3 1 7 12 10 50 14 8| NLA| 22| 40
PRIMEFAC 10 4 2 1 5 8 7 40 10 7| NLA| 16| 24
BV-DEMORGAN 9 4 1 0 3 7 6 49 15 X 13| 24| 34
BV-BOOLRULE 9 4 2 0 5 7 7 43 11 X 36| 19| 26
UD-SIMPLIFY 15 1 0 0 1 8 4 29 4 x| NLA 9 6
UD-MINMAX 15 6| 3 1 7 15 11 86 22 X 32| 19| 33

x — Normalization technique is not applicable for these cases.
NLA — Yices2 terminated prematurely due to the presence of non-linear

arithmetic. @

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 20 /23

Conclusion and future works
Outline

© Conclusion and future works

@

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 21 /23

Conclusion and future works

Conclusion and future works

Conclusion

@ \We have augmented a path based equivalence checker [ISED12] with SMT
solvers.

@ Experiments carried out using three SMT solvers — Yices2, CVC4, Z3 -
demonstrate that the current equivalence checker is now equipped to handle
bit-vectors, user-defined datatypes and sophisticated code transformations.

@ The upgraded equivalence checker will automatically benefit from the
current research focusing on improving (underlying) SMT solvers.

@ To reduce execution time, it may be more advantageous solution to employ
an SMT solver only when normalization fails to prove the equivalence.

Future works

@ Automate the whole verification process; COmpiler INfraStructure [COINS]
may be helpful in this regard.

@ Perform extensive experimentation to test the limits of SMT solvers.

@ Since different SMT solvers excel in different fields, find out the best @
possible combination.

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 21 /23

References

References

[ISQEDO6]
[TCADOS]

[TODAES12]

[ISED12]

[TCAD13]

[COINS]

Karfa et al, “A Formal Verification Method of Scheduling in
High-level Synthesis,” ISQED 2006

Karfa et al, “An Equivalence-Checking Method for Scheduling
Verification in High-Level Synthesis,” TCAD 2008

Karfa et al, “Formal Verification of Code Motion Tech-
niques using Data-flow-driven Equivalence Checking,” TO-
DAES 2012

Banerjee et al, “A Value Propagation Based Equivalence
Checking Method for Verification of Code Motion Tech-
niques,” ISED 2012

Banerjee et al, “Verification of Code Motion Techniques using
Value Propagation,” TCAD 2013
http://coins-compiler.sourceforge. jp/
international/

@

K Banerjee et al (IIT Kharagpur) FM Update Meeting 2014 July 29, 2014 22 /23

http://coins-compiler.sourceforge.jp/international/
http://coins-compiler.sourceforge.jp/international/

Thank you

W W/

kunalb@cse.iitkgp.ernet.in

@

FM Update Meeting 2014 July 29, 2014 23 /23

kunalb@cse.iitkgp.ernet.in

	Background
	Translation validation
	Path based equivalence checkers
	SMT solvers

	Normalization technique
	Deploying SMT solvers
	Experimental results
	Conclusion and future works

