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Generative AI and LLMs

Generative AI
Generative AI is a type of artificial intelligence that creates new
content like text, images, music, audio, or videos, based on patterns
learned from existing data. It uses machine learning models, often large
models, that are pre-trained on vast amounts of data. Instead of just
identifying patterns or making predictions, generative AI actively
generates new instances or variations of the data it has been trained on.

Large Language Models (LLMs)
LLMs are advanced artificial intelligence systems designed to
understand and generate human language. They leverage deep learning
techniques, particularly the transformer architecture, to analyze vast
amounts of text data and learn complex patterns in language. This
allows them to perform various natural language processing (NLP)
tasks like generating text, translating languages, and understanding the
meaning of text.
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Generative AI is in Focus

Figure 1: IT leaders rank generative AI as their top budget priority for 2025

Source: VentureBeat article
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Generative AI Spending on the Rise

Figure 2: In 2027, enterprise spending on generative AI solutions worldwide
will grow nearly ninefold from its total in 2023

Source: EMarketer article
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Latencies for Different LLMs

Figure 3: A summary of both average latency and word count metrics

Source: Aidocmaker article
☞ Latency and verbosity are ideally inversely related
☞ Latency is more for LLMs that are meant for reasoning (e.g.,

ChatGPT o1)
☞ Latency should be greater if images/audios/videos are generated
☞ All these latencies may be unacceptable for solutions

catering to large number of requests
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Motivation

Large Language Models (LLMs) are everywhere
Its applications include question-answering, translation,
summarization among many others
Unfortunately, LLMs incur high usage costs and latency
An LLM focused caching system can significantly reduce
usage costs along with latency
Additionally, too many requests coming from a user may lead to
(temporary) suspension which hampers developer productivity and
customer experience significantly – a cache may help alleviate this
problem as well
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GPTCache

⋆ Fu Bang, “GPTCache: An Open-Source Semantic Cache for LLM
Applications Enabling Faster Answers and Cost Savings,” ACL
2023

Figure 4: The overall architecture of GPTCache
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Cache Manager in GPTCache

Cache manager lies at the core of GPTCache:
L1 Cache Storage: When a user query arrives, it is first
converted into an embedding vector and stored in a vector
database; along with an embedding vector, a unique scalar id is
also generated
L2 Cahce Storage: Stores the unique scalar ids generated by the
L1 cache along with the corresponding LLM responses
Eviction Management: Clears the cache by following a
pre-determined policy, e.g., LRU, FIFO, to maintain the cache
capacity

N.B. The original GPTCache paper uses the terms vector storage and cache storage
whereas, we use L1 cache storage and L2 cache storage, respectively. We deviate
from the original terminology for two reasons: (i) we found the terms vector storage
and cache storage confusing because both are part of GPTCache, and (ii) L1 and L2
storages are commonly used terms in the context of caching and also imply the
order in which these storages are accessed (similar to standard caches).

Kunal Banerjee LLM Cache 22-Aug-2025 11 / 30



Limitations of GPTCache / Contributions of waLLMartCache

1 We introduce the support for a new database Redis in
GPTCache – this is used as L2 cache in our designed system (our
PR is already merged with GPTCache)

2 Currently, GPTCache is implemented to be run on a single node
which we enhance to span across multiple nodes to handle
industry-scale requests and consequently, we also designed a
distributed eviction manager

3 We further create partitions for individual tenants (clients) so that
these can be hosted together while maintaining semantic
separations

4 We present a decision engine (i.e., an enhanced semantic
similarity checker) that decides whether to cache an LLM response
based on retail business use-cases

5 We showcase that preloading FAQs (which can be set to be
stored persistently in the memory) while booting the LLM cache
can be a simple yet effective strategy to boost cache hits
significantly
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Dataset Description

Collected from in-house Generative AI Playground
Any associate can pose a query and get its response from LLM
Covers a large spectrum of queries related to retail industry
The chosen queries are in the range from 500 to 1000 tokens
The response lengths vary and can be very large
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Incorporating Redis as a Database

Table 1: Experimental results with Redis as an L2 cache storage

Content Size #Concurrent #Requests #RPS Average Median
Users Response Response

(#tokens) Time (ms) Time (ms)

<2K 500 135758 156 119 45
1000 170530 258 614 190

2K to 5K 500 83035 155 141 55
1000 180694 239 1051 180

5K to 10K 500 81536 158 152 91
1000 122708 217 1523 240

>10K 500 91331 154 227 140
1000 103840 180 2463 380

All buckets 500 135365 150 173 48
1000 190668 230 952 200

☞ Due to our internal non-competition policy, we refrain from mentioning
the other databases that we explored; nevertheless, it may be noted that
the closest competition scaled to only 30% of the Requests Per Second
(RPS) that was registered for Redis for the same configuration
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To Cache or Not to Cache (Example 1)

User1
Query: How much income tax did I pay last year?
Response: You paid Rs. X as income tax for FY 2024-25.

User1
Query: How much income tax did I pay last year?
Response: You paid Rs. X as income tax for FY 2024-25.

☞ In this case, caching should be helpful!
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To Cache or Not to Cache (Example 2)

User1
Query: How much income tax did I pay last year?
Response: You paid Rs. X as income tax for FY 2024-25.

User2
Query: How much income tax did I pay last year?
Response: You paid Rs. X as income tax for FY 2024-25.
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To Cache or Not to Cache (Example 2)

User1
Query: How much income tax did I pay last year?
Response: You paid Rs. X as income tax for FY 2024-25.

User2
Query: How much income tax did I pay last year?
Response: You paid Rs. X as income tax for FY 2024-25.

☞ In this case, caching can be erroneous!

☞ Semantic separation needs to be maintained across tenants
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Distributed LLM Cache with Multi-Tenancy

Figure 5: Design of our distributed cache for LLMs
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To Cache or Not to Cache (Example 3)

User1
Query: What was yesterday’s average temperature?
Response: It was 30°C.

User1
Query: What was yesterday’s average temperature?
Response: It was 30°C.

☞ Even if the exact same question is asked the next day (by the same
user), returning the cached answer would be wrong!
☞ Therefore, we do not cache those queries whose responses may differ
with time
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To Cache or Not to Cache (Example 4)

User1
Query: Optimize the following code:
const = 2.0; pi = 22.0/7.0; circumference = const * pi * radius;
Response: circumference = 6.2857 * radius;

User1
Query: Optimize the following code:
pi = 22.0/7.0; circumference = 2.0 * pi * radius;
Response: circumference = 6.2857 * radius;

☞ In this case, caching should be helpful!
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To Cache or Not to Cache (Example 5)

User1
Query: Optimize the following code:
const = 2.0; pi = 22.0/7.0; circumference = const * pi * radius;
Response: circumference = 6.2857 * radius;

User1
Query: Optimize the following code:
pi = 22.0*7.0; circumference = 2.0 * pi * radius;
Response: ...

Kunal Banerjee LLM Cache 22-Aug-2025 20 / 30



To Cache or Not to Cache (Example 5)

User1
Query: Optimize the following code:
const = 2.0; pi = 22.0/7.0; circumference = const * pi * radius;
Response: circumference = 6.2857 * radius;

User1
Query: Optimize the following code:
pi = 22.0*7.0; circumference = 2.0 * pi * radius;
Response: ...

Kunal Banerjee LLM Cache 22-Aug-2025 20 / 30



To Cache or Not to Cache (Example 5)

User1
Query: Optimize the following code:
const = 2.0; pi = 22.0/7.0; circumference = const * pi * radius;
Response: circumference = 6.2857 * radius;

User1
Query: Optimize the following code:
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☞ Vector embedding based semantic similarity between two queries
having code snippets is a notoriously difficult task that often leads to
false positives, i.e., erroneous cache hits!

☞ The percentage of true cache hits for queries containing codes was
only ∼ 10% in our experiments
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Improved Decision Engine for Caching

Figure 6: Design of our decision engine

Code Detector: Detects code snippets
Temporal Context Detector: Detects temporal dependence
Similarity Evaluator: This is identical to that of GPTCache
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To Cache or Not to Cache (Example 6)

User1
Query: What is the price of iPhone 16?
Response: It is Rs. X.

User1
Query: What is the price of iPhone 16?
Response: It is Rs. X.

☞ If the retailer has dynamic pricing, then cached response can be
erroneous!
☞ In this case, there was no temporal context in the query
☞ There is further scope to improve the decision engine based on the
business requirements
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Pre-loading FAQs into the Cache

Chat bot applications often encounter same questions repeatedly –
such common questions and their responses can be collated into
Frequently Asked Questions (FAQs) and can be pre-loaded into the
cache to boost up its hits
The FAQs can be volatile or non-volatile; the following experiment
is with non-volatile configuration

Table 2: Experimental results for finding the efficacy of pre-loaded FAQs

#Concurrent #Requests #RPS Average Median Cache Cache
Users Response Response Hit Hit

Time (ms) Time (ms) w/o FAQ w/ FAQ
1000 293304 329 45 35 80% 90%
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Ablation Study Dataset

We chose a set of
1 100 prompts containing code
2 100 textual prompts containing temporal context
3 100 (regular) textual prompts without any temporal context or code

For each prompt, we create
1 5 semantically similar prompts – leading to correct cache hits
2 5 dissimilar prompts – leading to correct cache misses – note that

these prompts need to be pairwise semantically different as well

We use GPT-4 to generate the semantically similar and dissimilar
prompts from a given textual prompt
For similar prompts: active to passive voice, compound to multiple
simple sentences, positive to double negative (e.g., “present” to “not
absent”), replace a single or multiple words by their synonyms
For dissimilar prompts: positive to negative, replace a single or
multiple words by their antonyms, replace the entire prompt by
some random unrelated Wikipedia sentence(s)
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Ablation Study Dataset (contd.)

For prompts containing code
to generate similar prompts, we replaced equations by their
mathematical equivalent ones (e.g., y + y to 2 ∗ y), or added some
constant and later subtracted the same constant, etc.
to generate dissimilar prompts, we deliberately changed some of the
operators, or removed equations partially or totally

We have manually checked whether the resulting prompts were
indeed similar or dissimilar
Thus, each prompt led to 10 additional prompts, and overall we
had 3300 prompts (including the original ones)
The entire set is randomly shuffled before invoking the LLM cache
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Ablation Experiment 1

Table 3: Effects of Redis, distributed cache, decision engine and pre-loading FAQs
on semantic caching

Method Correct Hit Incorrect Hit Correct Miss Incorrect Miss Acc(%)
Reg CdeTmp Reg CdeTmp Reg CdeTmp Reg Cde Tmp Reg All

Oracle 500 500 0 0 0 0 600 600 1100 0 0 0 100 100
GPTCache 401 422 0 59 435 77 550 222 545 90 21 478 86.4 64.8
WMC(1N) 401 422 0 59 435 77 550 222 545 90 21 478 86.4 64.8
WMC(4N) 399 418 0 61 438 77 548 222 543 92 22 480 86.1 64.5
WMC(4N)+DE 399 0 0 61 0 0 548 600 1100 92 500 0 86.1 80.2
WMC(4N)+DE+FAQ 488 0 0 65 0 0 498 600 1100 49 500 0 89.6 81.4

Cde: Prompts containing code
Tmp: Textual prompts containing temporal context
Reg: Regular textual prompts without any temporal context
Oracle: Makes no incorrect cache hit or miss – it is used to benchmark
GPTCache and our waLLMartCache
WMC(1N): waLLMartCache deployed to only a single node
WMC(4N): waLLMartCache distributed to four nodes
WMC(4N)+DE: WMC(4N) augmented with Decision Engine
WMC(4N)+DE+FAQ: WMC(4N)+DE pre-loaded with FAQs
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Ablation Experiment 2

Table 4: Effects of multi-tenancy on semantic caching

Method T Correct Hit Incorrect Hit Correct Miss Incorrect Miss Acc(%)
Reg CdeTmp Reg CdeTmp Reg CdeTmp Reg Cde Tmp Reg All

Oracle 1 250 250 0 0 0 0 300 300 550 0 0 0 100 1002 250 250 0 0 0 0 300 250 550 0 0 0

GPTCache 1 199 215 0 55 288 59 250 36 245 46 11 246 82 572 202 207 0 52 291 61 251 36 240 45 16 249

WMC(4N)+DE+FAQ 1 211 0 0 55 0 0 249 300 550 35 250 0 83.8 79.42 212 0 0 54 0 0 250 300 550 34 250 0

WMC(4N)+DE+FAQ+MT 1 244 0 0 33 0 0 247 300 550 26 250 0 89.5 81.32 244 0 0 32 0 0 249 300 550 25 250 0

Cde: Prompts containing code
Tmp: Textual prompts containing temporal context
Reg: Regular textual prompts without any temporal context
Oracle: Makes no incorrect cache hit or miss – it is used to benchmark
GPTCache and our waLLMartCache
WMC(4N)+DE+FAQ: WMC(4N)+DE pre-loaded with FAQs
WMC(4N)+DE+FAQ+MT: WMC(4N)+DE+FAQ with multi-tenancy
support
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Conclusion

LLMs have wide applicability but they suffer from high usage costs
and latency
An LLM cache can alleviate these hurdles
The original work GPTCache needs lot of enhancements before it
can be adopted for industry-grade applications, e.g., multi-node
and multi-tenant support
Moreover, one may need to judiciously decide which queries need
to be cached
Pre-loading FAQs can be a simple yet effective startegy to boost
cache hits
There is scope to improve semantic similarity for queries involving
codes
Idea to explore: Check if switching LLMs in the interim based on
historical data is a good idea or not, i.e., use a more powerful LLM
initially so that our cache is populated with richer responses and
then transition to a less powerful LLM if we believe that most
responses in the foreseeable future will be returned from the cache
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Thank You!
✉ kunal.banerjee1@walmart.com
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