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Brief Biography

@ Professional Experience
e Walmart: Principal Data Scientist (Sep 2020 — Present)
o Intel Labs: Research Scientist (Aug 2015 — Aug 2020)
o Educational Background
e PhD: Computer Science & Engineering, IIT Kharagpur (2010 — 2015)
e BTech: Computer Science & Engineering, Heritage Inst of Tech (2004 — 2008)
@ Research Highlights
8 journal publications
More than 50 conference/workshop publicatons
1043 citations (as on March 12, 2024)

Best PhD Thesis Awards, Best Paper Awards, Special Mentions
IEEE Senior Member, ACM Senior Member
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Deep Learning & HPC

Deep Learning is now ubiquitous:
self-driving cars, voice-activated assistants, automatic machine translation, image
recognition, cancer detection, market price forecasting, chat bots, etc.

Table: Training time and top-1 validation accuracy with ImageNet/ResNet-50

Batch Size  Processor DL Library  Time Accuracy

He et al. 256 Tesla P100x8 Caffe 29 hours 75.30%
Goyal et al. 8K Tesla P100 %256 Caffe 21 hours 76.30%
Smith et al. 16K Full TPU Pod TensorFlow 30 mins 76.10%
Akiba et al. 32K Tesla P100x 1024 Chainer 15 mins 74.90%
Jia et al. 64K Tesla P40x2048 TensorFlow 6.6 mins 75.80%
Mikami et al. 68K Tesla V100x 2176 NNL 224 secs 75.03%

Source: news.developer.nvidia.com/sony-breaks-resnet-50-training-record-with-nvidia-vi00-tensor-core-gpus/
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Deep Learning & HPC

Deep Learning is now ubiquitous:
self-driving cars, voice-activated assistants, automatic machine translation, image
recognition, cancer detection, market price forecasting, chat bots, etc.

Table: Training time and top-1 validation accuracy with ImageNet/ResNet-50

Batch Size  Processor DL Library  Time Accuracy

He et al. 256 Tesla P100x8 Caffe 29 hours 75.30%
Goyal et al. 8K Tesla P100 %256 Caffe 21 hours 76.30%
Smith et al. 16K Full TPU Pod TensorFlow 30 mins 76.10%
Akiba et al. 32K Tesla P100x 1024 Chainer 15 mins 74.90%
Jia et al. 64K Tesla P40x2048 TensorFlow 6.6 mins 75.80%
Mikami et al. 68K Tesla V100x 2176 NNL 224 secs 75.03%

Source: news.developer.nvidia.com/sony-breaks-resnet-50-training-record-with-nvidia-vi00-tensor-core-gpus/

“Finally, after decades of research, deep learning, the abundance of data, the powerful
computation of GPUs came together in a big bang of modern Al"
— Jensen Huang, CEO of Nvidia
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Only 5% ML Code Exists in an ML System

Data Collection| Data Machine
Verification Resource
Management
Serving
I Infrastructure)
Feature o Analysis Tools
Extraction
Process Monitoring
Management Configuration
Tools

Source: Scullery et al., Hidden Technical Debt in Machine Learning Systems, NeurlPS 2015
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(Top-Down) Levels of Applying Optimization

Node-level: Scaling to multiple nodes — scope: > 100x

Model-level: Explore alternate models and/or model compression
E.g.: Use EfficientNet-B0 instead of Resnet-50 — scope: ~ 10x

Compiler/Kernel-level: Execute alternate optimized kernels
E.g.: FFT/Winograd based convolution — scope: ~ 3 — 4x

@ Precision-level: Apply precision levels below FP32
Nvidia Volta — peak FLOPS: 15 TF vs peak OPS (in FP16): 120 TF -
scope: 8X%
Nvidia Ampere — peak FLOPS: 19.5 TF vs peak OPS (in FP16, BFLOAT16):
312 TF (624 TF with sparsity) — scope: 32x

== At Intel, we explored all levels for optimization; however, model-level was
explored comparatively less. | got to explore this level at Walmart.
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Research at Intel Labs

Bounds on Performance in HPC

o Compute-bound: Kernel spends most of its time in calculations, e.g., matrix
multiplication — compute: O(n?), memory: O(n?)

@ Bandwidth-bound: Kernel spends most of its time in fetching the data,
e.g., matrix addition — compute: O(n?), memory: O(n?)

o Latency-bound: Kernel spends most of its time in memory fetches without
saturating the global memory bus, e.g., accessing A[B[i]]
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Bounds on Performance in HPC

o Compute-bound: Kernel spends most of its time in calculations, e.g., matrix
multiplication — compute: O(n?), memory: O(n?)

@ Bandwidth-bound: Kernel spends most of its time in fetching the data,
e.g., matrix addition — compute: O(n?), memory: O(n?)

o Latency-bound: Kernel spends most of its time in memory fetches without
saturating the global memory bus, e.g., accessing A[B[i]]

== Bandwidth-bound and latency-bound together constitute memory-bound
kernels

1= (Normal) Convolution is compute-bound except 1 x 1 convolutions, which
being element-wise multiplications are memory-bound

== Personally, never worked with latency-bound kernels although these
sometimes occur in HPC, e.g., FM-index based sequence search in
computational-biology

1= There are other types of bounds as well, e.g., 1/O-bound
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Research at Intel Labs

Recurrent Neural Network (RNN)

htZA(W*xt—l—R*ht,l—l—b)
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A € {o, tanh, RelLU}, i.e., a non-linear activation function
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Research at Intel Labs

Long Short-Term Memory (LSTM)

it :U(Wi*$t+Ri*ht_1+bi)
¢ =tanh(W, x x4 + R. * hy—1 + b.)
fi=0Ws*ay+ Ry *hy_1+byg)
or =c(Wyxxy + Ry * hy—1 + b,)
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Long Short-Term Memory (LSTM)

it :U(Wi*xt+Ri*ht_1+bi)
Cy = tanh(WC * Ty + RC * ht,1 + bc)
fi=0(Ws*ay+ Ry *hy_1+byg)
or =0c(Wyxxy + Ry * hy—1 + b,)
s¢ = frosi_1+i0c
hy = o4 o tanh(s;)
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Long Short-Term Memory (LSTM)

it :J(WZ * Ty + Rl * ht—l -+ bl)
¢ =tanh(W,. xxy + R. * hy—1 + b.)
ft :O'(Wf * Ty + Rf *hy_1 + bf)
0y =0(Wy xxy + Ry * hy—1 + by,)
sg=fto8_1+i0¢
ht =0t © tanh(s,«,)
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Implementation of RNN, LSTM, GRU

@ Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) are
special cases of RNN — same methodology applies in general

Main computation consists of GEMMs Wy; ¢, oy * @ and Ry 500y * he—1

Element-wise operations are applied to the GEMM results

Analogous equations for back-propagation kernels
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Implementation of RNN, LSTM, GRU

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) are
special cases of RNN — same methodology applies in general

Main computation consists of GEMMs Wy; ¢, oy * @ and Ry 500y * he—1
Element-wise operations are applied to the GEMM results

Analogous equations for back-propagation kernels

Perform two large GEMMs (W * = and R * h) or one larger GEMM
(WR * xh), then perform element-wise operations
Easy to implement — rely on vendor-optimized GEMM
X Element-wise operations exposed as bandwidth-bound kernel (vs in-cache
reuse of GEMM outputs)
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Batch-Reduce GEMM

N blocks Kblocks

. Bk

MblOCkS Cij - Cij +

Batch reduce
) GEMM

1= The single batch-reduce GEMM kernel can act as the innermost kernel for a
variety of deep learning topologies (CNN, RNN, LSTM, GRU, MLP)
delivering SOTA performance

15 Boosts programmer productivity which otherwise is spent tuning various
kernels across different topologies

= All code available in https://github.com/hfp/libxsmm

% E Georganas, K Banerjee et al., “Harnessing Deep Learning via a Single
Building Block,” IPDPS 2020
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Comaprison with Intel® MKL-DNN

w= Intel® MKL-DNN is an open source performance library from Intel

Minibatch: 168 #Time Steps: 50 Minibatch: 168 #Time Steps: 50
3500 = UBXSMM cell ~ BEEMKL-DNN  «-- Peak 3500 EELUBXSMM cell  BEEMKL-DNN  se+ Peak
3000 3046 3000 seeeesssesesseessssiesssisesesisesestesessaeasnsaes 3046
2500 2500
& 2000 & 2000
g 2
& 1500 % 1500
1000 1000
500 500 -
0 0
1024 2048 4096 1024 2048 4096
Hidden State Size Hidden State Size
Forward pass results Backward/weight update pass results

@ Machine: Single socket Xeon Platinum 8180 with 28 Cores
@ For small/medium sized problems, forward pass is up to 1.4x faster, while
for backward /weight update it is up to 1.3x faster

o For large weight matrices the two approaches have similar performance
because GEMM has cubic scaling whereas element-wise has quadratic scaling
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Comaprison with Intel® MKL-DNN

w Intel® MKL-DNN is an open source performance library from Intel

Minibatch: 168 #Time Steps: 50 Minibatch: 168 #Time Steps: 50
3500 = BXSMM cell ~ BEMKL-DNN s« Peak 3500 = LBXSMM cell = MKLDNN  eeee Peak
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% K Banerjee et al., "Optimizing Deep Learning LSTM Topologies on Intel
Xeon Architecture,” 1SC 2019 (Best Research Poster — Al & ML track)

% K Banerjee et al., “Optimizing Deep Learning RNN Topologies on Intel
Architecture,” JSFI 2019 (invited journal paper)
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Low-Precision Datatype & bfloat16

Low-Precision: Any datatype below FP32
FP32 s| 8 bit exp | 23 bit mantissa

FP16 |s| 5bit | 10bit |

BF16 |s| 8bit | 7bit |

BF16 has several advantages over FP16:
@ It can be seen as a short version of FP32, skipping the least significant 16 bits of mantissa

@ There is no need to support denormals; FP32, and therefore also BF16, offer more than
enough range for deep learning training tasks

@ Hardware exception handling is not needed

Source: https://software.intel.com/sites/default/files/managed /40 /8b/bf16-hardware-numerics-definition-white-paper.pdf

* D Kalamkar et al., "A Study of BFLOAT16 for Deep Learning Training,”
2019

1 BF16 has been adopted by Intel, Nvidia, AMD and others after we showcased
its efficacy
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Research at Intel Labs

A Perturbation Theory View of Low-Precision Inference
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Research at Intel Labs

A Perturbation Theory View of Low-Precision Inference

fire engine (8a-2w)
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A Perturbation Theory View of Low-Precision Inference

fire engine (8a-2w)
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Research at Intel Labs

A Perturbation Theory View of Low-Precision Inference

ice bear (8a-4w)
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Research at Intel Labs

A Perturbation Theory View of Low-Precision Inference

ice bear (8a-4w)
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Research at Intel Labs

A Perturbation Theory View of Low-Precision Inference

old English sheepdog (8a-6w)
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Research at Intel Labs

A Perturbation Theory View of Low-Precision Inference

old English sheepdog (8a-6w)
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Research at Intel Labs

A Perturbation Theory View of Low-Precision Inference

dalmatian (8a-8w)
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Research at Intel Labs

A Perturbation Theory View of Low-Precision Inference

dalmatian (8a-8w)
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Research at Intel Labs

A Perturbation Theory View of Low-Precision Inference

Low precision (and sparsification): adding noise to weights/activations

Need to preserve the output of each layer such that no/little loss of accuracy

8-bit weight and 8-bit activations (8a-8w) shown to work well

o ~1% loss of accuracy from FP-32 on very deep CNNs (e.g. ResNet101)

Sub-8-bit weights and/or activations incur noticeable drop in accuracy

Our observation:

e Not all the weights may be well-represented by sub-8-bit precision
o Not all the weights may need 8-bit precision

@ Our approach: Keep low-precision weights in a neighborhood of FP32 weights using
only 8-bit activations and Ternay weights

W (Low Prec)

W (FP32)
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Ternary Residual Inference

Ternary Weights: oW ~ W, W; = sign(W;), if |[Wi| > T, and 0 otherwise
E(a,T) = ||W — aW|%, o, T* = argminE(a, T),a > 0, W; € {—1,0,+1}

a>0,T>0

e
D>—3

10

Theoretical understanding of sensitivity of weights and/or activations to final classification
accuracy

@ Highly sensitive layers (e.g. first conv layer) require more precision

@ We want uniform low-precision operations rather than multi-precision
Ternary Residual Edge: add more ternary edges selectively s.t.

@ More ternary compute for certain parts of the augmented network

@ Significant recovery of loss with overall less compute cost than 8a-8w

% A Kundu, K Banerjee et al., “Ternary Residual Networks,” SysML 2018
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Ternary Residual Inference (contd.)

= Further fine-tuning via block-wise ternary residual

o Partition the weights in disjoint blocks (of N elements)
e Convert to ternary, and add r number of residual blocks (if necessary)

w N and r control the model size, accuracy, and ternary compute

= We can adjust the accuracy-compute trade-off on-the-fly during inference (unlike
other models) by disabling least important residual blocks

1= Results of Ternary Residual conversion of ResNet-101 pre-trained on ImageNet

o Total number of blocks (without residual) is 1x
e Overall ~ 2x savings in compute cost comparing to 8a-8w with similar

accuracy
Block Size ~ 1% ~ 2%
#Blocks | mult reduction | #Blocks | mult reduction
N =064 [ 24x ]| 26 x [ 2x ] 32X
N =256 || 2.8x | 90x [ 24x | ___105x

Dr. Kunal Banerjee (Principal Data Scientist) Doing Impactful Research in Industry 12-Mar-2024



Research at Walmart

Text Extraction from Images: Challenges

==

e AN

e PR

_aNes

Upto10lb diapers.

,,,,,,

Characteristics of texts on product images:
@ Non-standard fonts and sizes
@ Text can be vertical or inverted
@ Text can be irregularly oriented or curved
o Non-dictionary words (e.g., brand names)
@ High local entropy
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Text Extraction from Images: Use-cases

@ In the context of scale at which Walmart operates, the text from an image
can be a richer and more accurate source of data than human inputs

@ Used in several applications such as Attribute Extraction (MRP, Country of
Origin, Ingredients), Offensive Text Classification, Product Matching

@ The solution provided is proven to work at million image scale for various
retail business units within Walmart while saving 30% computational cost in
both the training and the inference stages

% P Dugar et al., "From Pixels To Words: A Scalable Journey Of Text
Information From Product Images To Retail Catalog,” CIKM 2021
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Research at Walmart

Generic Pipeline for Text Extraction from Images

Affinity Score
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Research at Walmart

Walmart's Pipeline for Text Extraction from Images

g 7

Text Extraction | TextRecognition
\ y

; :

Deep-Speed v
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Research at Walmart

Handling Vertical Texts

Case 1 Case 2

@ Case 1 can be handled by rotating the text by 90° or 270°

o Case 2 requires slicing each character and then putting these together to get
the word
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Research at Walmart

Handling Inverted Texts
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Research at Walmart

Text Extraction from Images in Action: Cargo ldentification

Further enhancements:
% P Dugar et al., “Don't Miss the Fine Print! An Enhanced Framework To Extract
Text From Low Resolution Images,” VISAPP 2022
% S Misra et al., “Designing a Vision Transformer based Enhanced Text Extractor
from Product Images,” CoDS-CoMAD 2023
% S Misra et al., “BARGAIN: A Super-Resolution Technique to Gain High-Resolution
Images for Barcodes,” CoDS-CoMAD 2024
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Research at Walmart

What is AutoML?

AutoML
]
- m
—’
Dataset
[}
°
°®
w L
ML Task
Winner Model
Metric
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Advantages of AutoML

Democratizing Al
e You don't need to be an ML expert to use ML now

Reduced Time-to-Market

o Less time spent in development
o Less chance of bugs in the code

Realizing Operational Excellence

o AutoML injects more standardization into the generation of models
e Models may be generated keeping scaling in mind

Reduced Cost

o Less head count needed (Data Scientists are typically hard to retain)
o An efficient model leads to less inference cost
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Research at Walmart

What are some off-the-shelf AutoML solutions?

data A%
DataRobot e PN

Azure Machine Learning

O
Hzo.Cli B dotData ':' ‘:’

PREVISION.IO zfAuger.AI eARET DMUIAY
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Introduction to WALTS (Do we even need it?)

WALTS = Walmart AutoML Libraries, Tools and Services

Motivation: WALTS tries to address some of the shortcomings that we
discovered in other commercial AutoML tools as mentioned below.

@ Customizability

@ Transparency

© Low-precision Models

@ Scope for Unique Enhancements
@ Data Sensitivity

@ Reduced Time-to-Explore

@ Cost Efficient

% R Bajaj, K Banerjee et al., "WALTS: Walmart AutoML Libraries, Tools and
Services,” SEAA 2022
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Benefits of WALTS: Customizability

Model = It predicts “red” always
Accuracy = 0.8
Balanced Accuracy = 0.5

@ At the time of publication, all off-the-shelf AutoML services provide a fixed
set of metrics with no provision to extend this set by the users

@ Some of these, at times, can even be misleading, e.g., accuracy when the
classes are imbalanced

o After talking to internal clients’ requirements, we may easily introduce new
metrics, such as, balanced accuracy which is better suited for imbalanced
classes
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Research at Walmart

Benefits of WALTS: Transparency

° ®
® o o VS
O
o
O
Accuracy: 82% Accuracy: 80%
Latency: 100 ms Latency: 50 ms

o Typically, the AutoML frameworks report only the winner model
@ WALTS provides details of all the explored models and their performance
@ What if there are some hard latency requirements?

e The client may be happy with the second-best model (in terms of accuracy,
say) if it fits her latency needs — this kind of support can only be given by
WALTS
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Benefits of WALTS: Low-precision Models

IEEE half-precision 16-bit float

sign  exponent (5 bit) fraction (10 bit)
I« 1T ]
o/of1/1/0 0lo/1/0 0 0ololoo olo
15 14 10 9 0

|IEEE 754 single-precision 32-bit float

si%n exponent (8 bit) fraction (23 bit)
I 1 I 1
0 0 1 1 1 1 1 0 0 0 1 O 0 0 0 0 0O 0 0O 00 0 0 0 ® o 0 o0 0 0 0 0
31 30 23 22 0

@ Low-precision models lead to reduced memory footprint and reduced

latency
o Nvidia V100 - peak FLOPS: 15 TF vs peak OPS (in FP16): 120 TF — scope:
8x
o Nvidia A100 - peak FLOPS: 19.5 TF vs peak OPS (in FP16): 312 TF —
scope: 32x

o There are other low-precision datatypes: BFLOAT16, INT16, INTS, ...
@ Other AutoML frameworks produce models with FP32 datatype only

e You need a separate tool, e.g., TensorFlow Lite, to do the subsequent
conversion

@ WALTS produces low-precision versions for some models if V100 is provided
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Research at Walmart

Benefits of WALTS: Scope for Unique Enhancements

11 21 32 43 7
18 43 97 44 67
9 58 43 33 57
65 35 23 76 45

34 23 65 55

26 54 -4

11 21 32 43 7

18 43 97 44 67 34 23 65 6 55

45 43 23 17 26 43 54 -4 35

16 4 54 11 21 32 49 7

9 58 43 33 57 18 43 97 44 67

65 35 23 76 45 45 43 23 17
16 4 20 54 26
9 58 43 33 57
65 35 23 76 45

@ We plan to extend WALTS with unique enhancements, e.g., noise-aware
training, intelligent data imputation

@ We found that other AutoML tools drop rows with missing data instead of
imputing these
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Research at Walmart

Benefits of WALTS: Data Sensitivity

@ WALTS being an in-house tool is more secure than others

@ Some compliance policies, e.g., HIPAA, may prevent uploading data to the
cloud
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Benefits of WALTS: Reduced Time-to-explore & Cost Efficiency

Reduced Time-to-explore:

@ Commercial AutoML'’s complex search algorithms may find ad-hoc
architectures at the cost of trying out a combinatorial number of different
parameters (layers, connections)

@ WALTS's simple policy of exploring only a pre-defined set of models may be
less time consuming

@ Moreover, the models explored by WALTS being already popular, the clients
may be more open to adopting these

Cost Efficiency:

@ We do not plan to impose minimum charges for WALTS

Dr. Kunal Banerjee (Principal Data Scientist) Doing Impactful Research in Industry 12-Mar-2024



WALTS AutoML Algorithm

Inputs: A task T, a dataset D and a metric m
Output: A model M
1: Select set § = My, My, ..., Mk of candidate models based on task T and type of data in D
2: Mgy < 0, My — ©
3: for each model M;in S do
4: Train M; on dataset D and note its performance m;
/* Note that we use Optuna for hyper-parameter optimization of M; in this step */

S5: if m; > m,,,, then

6: Mgy < My My, — M;
7: end if

8: end for

9: return M,

Implementation Considerations

L '. ~

RELIABILITY EFFICIENCY SCALABILITY
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WALTS Results and Impacts

Training Results with WALTS %age Reduction in Time-to-Train
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wo &7 9] e19] 108
9| s s4| 491|283
2N I [iF5s
CIFAR-100 FN I 2 N N N N1 53 16
STAT 0 14
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St6 3
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Text Classification Dispste Categorization a3l 9| sial o3l le% N O o e
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ol SLE|9L4| 9I5| SLs| 1A Sl AN AR
XGBoost oLr| 09| 9| oLI| 4100
70| &
21| <
Asotated Corpus for NER using GBM. o
&
&

@ Improved productivity and scalability

e Reduced head count
o Reduced development time

o Efficient resource and infrastructure management

o Reduced infrastructure costs

@ Bridging skill gaps and reducing scope of error in applying Al/ML algorithms
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“Research is seeing what everybody else has seen and thinking what nobody else
has thought.”
— Albert Szent-Gyérgyi

“Research is formalized curiosity. It is poking and prying with a purpose.”
— Zora Neale Hurston

Thank you!

Email: Kunal.Banerjeel@walmart.com
Homepage: https://kunalbanerjee.github.io/
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