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Overview

© Background

e Applying Optimization
@ Node-level
@ Model-level
o Compiler/Kernel-level
@ Precision-level

© Open Problems
@ Node-level
@ Model-level
o Compiler/Kernel-level
@ Precision-level
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2o (S TR R
Deep Learning & HPC

Deep Learning is now ubiquitous:
self-driving cars, voice-activated assistants, automatic machine translation,
image recognition, cancer detection, market price forecasting, etc.

Table: Training time and top-1 validation accuracy with ImageNet/ResNet-50

Batch Size  Processor DL Library  Time Accuracy

He et al. 256 Tesla P100x8 Caffe 29 hours 75.30%
Goyal et al. 8K Tesla P100x256 Caffe 21 hours 76.30%
Smith et al. 16K full TPU Pod TensorFlow 30 mins 76.10%
Akiba et al. 32K Tesla P100x 1024 Chainer 15 mins 74.90%
Jia et al. 64K Tesla P40x2048 TensorFlow 6.6 mins 75.80%
Mikami et al. 68K Tesla V100x2176 NNL 224 secs 75.03%

Source: news.developer.nvidia.com/sony-breaks-resnet-50-training-record-with-nvidia-v100-tensor-core-gpus/

K. Banerjee (Walmart Labs)

DL meets HPC

Sep 2021

3/46


news.developer.nvidia.com/sony-breaks-resnet-50-training-record-with-nvidia-v100-tensor-core-gpus/

2o (S TR R
Deep Learning & HPC

Deep Learning is now ubiquitous:
self-driving cars, voice-activated assistants, automatic machine translation,
image recognition, cancer detection, market price forecasting, etc.

Table: Training time and top-1 validation accuracy with ImageNet/ResNet-50

Batch Size  Processor DL Library  Time Accuracy

He et al. 256 Tesla P100x8 Caffe 29 hours 75.30%
Goyal et al. 8K Tesla P100x256 Caffe 21 hours 76.30%
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Source: news.developer.nvidia.com/sony-breaks-resnet-50-training-record-with-nvidia-v100-tensor-core-gpus/

“Finally, after decades of research, deep learning, the abundance of data, the
powerful computation of GPUs came together in a big bang of modern Al.”

— Jensen Huang, CEO of Nvidia
DL meets HPC Sep2021 3,46
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2o (S TR R
Growing Compute of Deep Learning Models

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute (Log Scale)
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Only 5% ML Code Exists in an ML System

Data Collection|
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Background

Deep Learning & HPC
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Source: Scullery et al., Hidden Technical Debt in Machine Learning Systems, NeurlPS 2015
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2o (S TR R
(Top-Down) Levels of Applying Optimization

Node-level: Scaling to multiple nodes — scope: > 100x

Model-level: Explore alternate models and/or model compression
E.g.: Use EfficientNet-B0 instead of Resnet-50 — scope: ~ 10x

Compiler/Kernel-level: Execute alternate optimized kernels

E.g.: FFT/Winograd based convolution — scope: ~ 3 — 4x

o Precision-level: Apply precision levels below FP32

Nvidia Volta — peak FLOPS: 15 TF vs peak OPS (in FP16): 120 TF
— scope: 8x

Nvidia Ampere — peak FLOPS: 19.5 TF vs peak OPS (in FP16,
BFLOAT16): 312 TF (624 TF with sparsity) — scope: 32X

= \We explored all levels for optimization; however, model-level was
explored comparatively less
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Applying Optimization Node-level

Scaling

VERTICAL SCALING HORIZONTAL SCALING
Increase size of instance ( Add more instances )
( RAM, CPU etc.)

J A—.
y —

[
- =

1= Vertical Scaling = Scaling Up, and Horizontal Scaling = Scaling out

v

1= Henceforth, we are going to talk about horizontal scaling only
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Node-level
Scaling (contd.)

Amdahl’s Law
1
L= s

where, p is the parallelizable portion, and N is the number of nodes

speedup =

Example: If 80% of the process is parallizable (i.e., p = 0.8) and we have 4
nodes, then
1 1

1
d — — = — =
P T 1 08+ 28 T 02+02 04

25

In words, the speedup will be 2.5 times compared to a single node execution.
1= Strong Scaling: How the solution time varies with the number of
processors for a fixed total problem size.
1= \Weak Scaling: How the solution time varies with the number of
processors for a fixed problem size per processor.
DL meets HPC Sep 2021  9/46
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Scaling GNMT on an Intel CPU Cluster
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Translating English to Spanish

@ Neural Machine Translation (NMT) is an approach to machine
translation that uses an artificial neural networks

o Google's NMT (GNMT) is an LSTM based machine translation model

@ Major steps taken to expedite training of GNMT workload:

@ LSTM optimizations on x86 architecture (will cover in kernel-level)
@ Load balancing dataset
© Distributed training with Horovod-MLSL
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Applying Optimization Node-level

Load Balancing Dataset

Training Dataset — Load Imbalance Problem
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After padding

Lots of wasted compute due to padding to max sentence length within
current batch
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Applying Optimization Node-level

Load Balancing Dataset

Training Dataset — Bucketing

- AT, i

]

List of sentences After sorting After batching After shuffling

Grouping similar length sentences together in a batch reduces wasted
compute due to padding
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Applying Optimization Node-level

Load Balancing Dataset

Multi-node Training Dataset
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Divided list of After sorting on After batching & View of global
sentences across each node shuffling minibatch
nodes

Synchronization at gradient reduction causes wasted cycles due to
different sequence length on different nodes
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Applying Optimization Node-level

Load Balancing Dataset

Load Balanced Multi-node Training Dataset
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Each node processes full list of sentences and picks global minibatch from
a given bucket — then selects its own portion fromglobal batch
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Node-level
Horovod-MLSL

Horovod
@ Originally designed by Uber for distribiuted deep learning using
TensorFlow

@ Provides concise APl to modify TensorFlow model and make it run on
multi-node clusters

o By default uses MPI as communication backend

@ Additional communication optimizations, e.g., fusing several
communication calls

Intel® Machine Learning Scaling Library (MLSL)
@ We changed the MPI backend for Horovod with MLSL backend

@ Trade off compute for performance by dedicating several cores to
communication

@ Advantageous for communication-bound models

o Currently, replaced by Intel® oneAPI Collective Communications
Library (oneCCL)
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Applying Optin ion Node-level

Summary of Performance Optimizations

o
o
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% D Kalamkar, K Banerjee et al., “Training Google Neural Machine
Translation on an Intel CPU Cluster,” CLUSTER 2019
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Node-level

Weal Scaling up to 16 nodes

4 93% 91%
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57% 54%
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= 78% weak scaling efficiency from 1 node — 16 nodes
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e
Strong Scaling up to 16 nodes
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Applying Optimization Model-level

Convolution Neural Networks
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Squeezing Convolution Neural Networks

landola et al.,
Parameters and <0.5MB Model Size"
v Researchers use model compression and/or variants of convolution

Applying Optin ion Model-level

“SqueezeNet: AlexNet-level Accuracy with 50x Fewer

, 2016

layer (e.g., depthwise separable convolution in MobileNet)

K. Banerjee (Walmart Labs)
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Modelleve
AutoML (Neural Architecture Search, AutoAl)

Goals of AutoML
© Preprocess and clean the data
@ Select an appropriate model family
© Optimize model hyperparameters
© Design the topology of neural networks (if deep learning is used)

© Analyze the results obtained

]
H Dataset
=mE

Optimization L{!}
Metric

Automated Machine Learning
Machine Learning Model

?’:'?‘ Constraints
<1\ (Timefcost)
Source: https://softwareengineeringdaily.com/2019/05/15/introduction-to-automated-machine-learning-automl/
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Applying Optimization Compiler/Kernel-level

Compilers for Deep Learning

“The next war is compilers for the frameworks.”
— Soumith Chintala, Distinguished Engineer, Facebook Al

Caffe

@xnet
Keras\ Wlndows
1 4444.<i9Lmux
TensorFlow
macOS

ONNX

Google: Tensorflow XLA & MLIR (absorbed by LLVM), Amazon: NNVM
Facebook: Glow, Intel: nGraph (now moved to OpenVino), Apache TVM
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Applying Optimization Compiler/Kernel-level

Bounds on Performance in HPC

@ Compute-bound: Kernel spends most of its time in calculations,
e.g., matrix multiplication — compute: O(n®), memory: O(n?)

o Bandwidth-bound: Kernel spends most of its time in fetching the
data, e.g., matrix addition — compute: O(n?), memory: O(n?)

o Latency-bound: Kernel spends most of its time in memory fetches
without saturating the global memory bus, e.g., accessing A[B[i]]

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021 20/46



Applying Optimization Compiler/Kernel-level

Bounds on Performance in HPC

@ Compute-bound: Kernel spends most of its time in calculations,
e.g., matrix multiplication — compute: O(n3), memory: O(n?)

o Bandwidth-bound: Kernel spends most of its time in fetching the
data, e.g., matrix addition — compute: O(n?), memory: O(n?)

o Latency-bound: Kernel spends most of its time in memory fetches
without saturating the global memory bus, e.g., accessing A[B[i]]

1 Bandwidth-bound and latency-bound together constitute
memory-bound kernels

i (Normal) Convolution is compute-bound except 1 x 1 convolutions,
which being element-wise multiplications are memory-bound

1= Personally, never worked with latency-bound kernels although these
sometimes occur in HPC, e.g., FM-index based sequence search in
computational-biology

i There are other types of bounds as well, e.g., 1/O-bound
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Compiler/Kernelleve
Convolution (direct)

Naive convolution loop structure

S1: for n = 0 ... N-1 do //no. of images (minibatch)
S2: for k = 0 ... K-1 do //output feature maps
S3: for ¢ = 0 ... C-1 do //input feature maps

S4: for oj = 0 ... P-1 do //output height
S5: for oi = 0 ... Q-1 do //output weight
S6: ij = stride * oj
S7: ii = stride * oi
S8: for r = 0 ... R-1 do //weight height
S9: for s = 0 ... S-1 do //weight width
S$10: O[n] [k] [0j][oi] += I[n][cllij+r][ii+s] * W[k] [c][x][s]

@ Output feature maps computed independently (data parallel fashion)
o Block C and K loops by a factor of VLEN
o Vectorize fused multiply-add (FMA) in line S10
@ Register blocking in loops P and Q
e Improve data reuse from registers
o Decrease L1 traffic
e Hide the latency of the FMA instructions

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021 21/46



Compiler/Kernelleve
Convolution (direct) — after optimization

Convolution with vectorization and register blocking

S1: Cp, = C / VLEN
$2: Kp = K / VLEN
S3: P, =P / RBp
S4: Qp = Q / RBg
S5: for n = 0 ... N-1 do
S6: for k, = 0 ... Kp-1 do
S7: for ¢, =0 ... Cp-1 do
S8: for ojp = 0 ... Pu-1 do
S9: for oip = 0 ... Qp-1 do

S10: ij = stride * oj, * RBp

S11: ii = stride * oip * RBgQ
S12: oj = ojp * RBp
S13: oi = oip * RBg
S14: for r = 0 ... R-1 do
$15: for s = 0 ... S-1 do
S16: for k = 0 ... VLEN do
S17: for ¢ = 0 ... VLEN do
S18: for p = 0 . RBp do
S19: for q = 0 ... RBg do
$20: ij’ = ij + stride * p
S21: ii’ = ii + stride * q

$22: 0[n] [kp] [oj+p] [oi+q] [k] += T[n][cp] [ij/+r] [ii’+s][c] * Wlky] [cp] [x] [s] [c] [k]
v

Tensor Layouts:

IINJ[C][HIIW][VLEN],  O[N][K,][P][QI[VLEN],  W[K,][CH][R][S][VLEN][VLEN]
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Applying Optimization Compiler/Kernel-level

Convolution (direct) — after further optimization

Convolution with microkernel and layer fusion

S1: for n = 0 ... N-1 do

S2: for k, = 0 ... Kp-1 do

S3: for ¢, =0 ... Cp-1 do
S4: for ojp, = 0 ... Pyp-1 do
S56: for oip = 0 ... Qp-1 do
S6: ij stride * oj, * RBp

ii stride * oi, * RBg
ojp * RBp
89: oi = oip * RBQ
S10: CONV(&I[n][cp][ijl[iil[0], &W(lkp][cp][0]L[0][0][0], &0[n] [ky][oj][oil[0])
S11: if fuse(L()) AND cp == Cp-1 then

S12: APPLY (L(), &O0[n] [kb] [0j] [0i] [0]))

v

@ RBp, RB( depend on convolution, VLEN depends on architechture => JITed microkernel

@ Software Prefetching (to hide latency)
@ L1 cache prefetches — by same microkernel
@ L2 cache prefetches — by different microkernel

@ Change loop ordering to maximize data reuse

@ Eg. For R=1, S=1 convolutions, pull in C, loop = Increase output tensor reuse

by a factor of Cj
@ Parallelization strategy — Nx Ky, xP,xQp independent microkernel invocations

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021
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Applying Optimization Compiler/Kernel-level

Convolution (dire

ct) — Results
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Figure: ResNet-50 training performance results

Number of nodes

% “Anatomy Of High-Performance Deep Learning Convolutions On SIMD

Architectures,” SC 201
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Ca LG
Convolution using Winograd

Forward Convolution on KNL

@ Winograd — a special case of Convolution having filter size 3x3

@ Complexity of multiplication: N.(H/m).(W/n).C.K.(m+R-1).(n+S-1), N -
minibatch, (H, W) - (height, width) of feature map, (m, n) - (height, width)
of tile, C - #input channels, K - #output channels, R = S = 3 (filter size)

% ‘“Understanding the Performance of Small Convolution Operations for CNN
on Intel Architecture.,” SC Poster 2017
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Compier/Kernel-leve
Recurrent Neural Network (RNN)
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A € {o, tanh, ReLU}, i.e., a non-linear activation function
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Compier/Kernel-leve
Long Short-Term Memory (LSTM)

ir = o(Wj* x¢ + Ri x hy—1 + bj)
¢t = tanh(We * x¢ + Re % he—1 + bc)
fe = o(Wr % x¢ + Re % he—1 + by)
or = o(Wo * x¢ + Ro * hy—1 + bo)
st =ftost 1 +iroc
hy = oy o tanh(s;)
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Compier/Kernel-leve
Long Short-Term Memory (LSTM)

it = o(W s x¢ + R % he—1 + b;)
¢t = tanh(We % x¢ + Re * he—1 + bc)
fe = o(Wr % x¢ + Re % he—1 + by)
or = o(Wo * x¢ + Ro * hy—1 + bo)
st =ftost 1 +iroc
hy = oy o tanh(s;)
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Compier/Kernel-leve
Long Short-Term Memory (LSTM)

ir =o(W; * x¢ + R; * hy_1 + b;)
¢t =tanh(W, % x¢ + Re * ht—1 + bc)
fe =o(Wr * x¢ + Re x he_1 + br)
or =0 (Wp * x¢ + Ro % hy—1 + by)
st =fros 1+ itoct
hy =o¢ o tanh(s;)
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Implementation of RNN, LSTM, GRU

o Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)
are special cases of RNN — same methodology applies in general

Main computation consists of GEMMs W(; ¢, ¢} * x¢ and
R{i,f,o,c} * ht—l
Element-wise operations are applied to the GEMM results

Analogous equations for back-propagation kernels
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Implementation of RNN, LSTM, GRU

o Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)
are special cases of RNN — same methodology applies in general

@ Main computation consists of GEMMs W(; ¢ ¢} * x¢ and
R{i,f,o,c} * he 1

@ Element-wise operations are applied to the GEMM results

@ Analogous equations for back-propagation kernels

e Perform two large GEMMs (W % x and R x h) or one larger GEMM
(WR x xh), then perform element-wise operations

Easy to implement — rely on vendor-optimized GEMM
X Element-wise operations exposed as bandwidth-bound kernel (vs
in-cache reuse of GEMM outputs)
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Compiler/Kernel-level
Batch-Reduce GEMM

N blocks Kblocks

Bkj

= + L
Mb|OCkS Ci]' Cij | Adkl

Batch reduce
GEMM

Cij -

1 The single batch-reduce GEMM kernel can act as the innermost

kernel for a variety of deep learning topologies (CNN, RNN, LSTM,

GRU, MLP) delivering SOTA performance
= Boosts programmer productivity which otherwise is spent tuning
various kernels across different topologies
= All code available in https://github.com/hfp/libxsmm
% E Georganas, K Banerjee et al., “Harnessing Deep Learning via a
Single Building Block,” IPDPS 2020
DL meets HPC Sep 2021
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Comaprison with Intel® MKL-DNN

= Intel® MKL-DNN is an open source performance library from Intel

Minibatch: 168 #Time Steps: 50

3500 = BXSMM cell  mm MKL-DNN
3000 sesssessesesssssssssessssesssssesesssssssnnss
2500
& 2000
2
% 1500
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0
1024 2048

Hidden State Size

Forward pass results

«ee Peak 3500
------ 3046 3000
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2
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0

4096

Minibatch: 168 #Time Steps: 50

. |BXSMM cell = MKL-DNN «ees Peak

1024 2048 4096

Hidden State Size

Backward /weight update pass results

@ Machine: Single socket Xeon Platinum 8180 with 28 Cores
@ For small/medium sized problems, forward pass is up to 1.4x faster,
while for backward /weight update it is up to 1.3x faster

@ For large weight matrices the two approaches have similar
performance because GEMM has cubic scaling whereas element-wise

has quadratic scaling
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Comaprison with Intel® MKL-DNN

i Intel® MKL-DNN is an open source performance library from Intel

Minibatch: 168 #Time Steps: 50

3500 . LUBXSMM cell  mmmMKL-DNN <ev Peak 3500
3000 eeeeeeessreseesaesesrennes .- 3046 3000
2500 2500
& 2000 £ 2000

S 2
& 1500 & 1500
1000 1000
500 500
0 0

1024 2048 4096

Hidden State Size

Forward pass results

% K Banerjee et al., "Optimizing Deep Learning LSTM Topologies

Minibatch: 168 #Time Steps: 50

. LIBXSMM cell = MKL-DNN eees Peak

1024 2048 4096

Hidden State Size

Backward /weight update pass results

onlntel Xeon Architecture,” I1SC 2019 (Best Research Poster — Al &

ML track)

% K Banerjee et al., "Optimizing Deep Learning RNN Topologies on
Intel Architecture,” JSFI 2019 (invited paper)
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Using Off-the-shelf Library: DeepSpeed

Performance on 1, 2 and 4 V100 GPUs in images/sec

4-Baseline+DS DP+LP 2.8x

4-Baseline+DS DP

2.1x

a-saseline++7 07 | 1.6x

2aseines0s or+t7 - S .
2aaseinesos o7 | 1.7«
n—lg
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Figure: Performance of DeepSpeed'’s data parallelism and low-precision

1= One need not be an expert — just pick off-the-shelf components
% “From Pixels To Words: A Scalable Journey Of Text Information
From Product Images To Retail Catalog,” CIKM 2021
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Fre
Low-Precision Datatype & bfloat16

Low-Precision: Any datatype below FP32
FP32 s 8 bit exp 23 bit mantissa

FP16 s 5 bit 10 bit
BF16 s 8 bit 7 bit

BF16 has several advantages over FP16:

@ It can be seen as a short version of FP32, skipping the least significant 16 bits of
mantissa

@ There is no need to support denormals; FP32, and therefore also BF16, offer more
than enough range for deep learning training tasks

@ Hardware exception handling is not needed

Source: https://software.intel.com/sites/default/files/managed /40/8b /bf16-hardware-numerics-definition-white-paper.pdf
Intel's 3 Gen Intel® Xeon® Scalable processor (codenamed Cooper Lake) launched in
2020 includes bfloat16

Source: https://www.intel.in/content/www/in/en/products/docs/processors/xeon/3rd-gen-xeon-scalable-processors-brief.html|
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A2 ]
Deep Learning Training with bfloat16

#Epochs

~Top-1FP32 —Top-1BFP16 —Top-5FP32 —Top-5BFP16

80.7% 92.0%

90.0% Py

0.1% 80.0% 748.7%
57.4%

Test Accuracy

#Epochs

~Top-1FP32 —Top-1BFP16 —Top-5FP32 —Top-5 BFP16

(a) AlexNet

(b) ResNet-50

Figure: Imagenet-1K training, top-1 and top-5 validation accuracy plots for CNNs

K. Banerjee (Walmart Labs)

DL meets HPC

Sep 2021

33/46



A2 ]
Deep Learning Training with bfloat16

Neon-DS2 Bfloat16 training

100hr librispeech GNMT De-En Task with WMT'15 data-set
P 30
4 FP32Ret —a—Blcatte
) A S
» A
- , Fr32Buseline —8FP16 Emulation
) !
2% .
" A ] [
8 s 15
=200 L 2 |
g . - | /
150 s 0] [
4 + |
i [
10 — "
e SN
0 [Fan s} oM
| 111 - 0 0 1000 1500 20000 20000 30000 35000
0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 min esony
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(a) DeepSpeech2 (b) GNMT

Figure: RNN training using bfloat16 data type

% “A Study of BFLOAT16 for Deep Learning Training,” 2019
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A2 ]
Dynamic Fixed Point-16

= |Integer based ALUs require less area and less power compared to foating point
based ALUs

s 15 bit mantissa

s 15 bit mantissa
DFP16 s 7 bit
S 15 bit mantissa

s 15 bit mantissa

E. = E(g}a)}§|f|), F is a floating point tensor
€
E, = E;,, — (P —2),P is the # of bits used
Vin € I, f, = in x 25 where f, € F
Multiplication: i, = iz X ip and exponent E?* =E? + E?
Addition:
. in+ (iy >> (E? — E?)), if E2 > E?
fatp =
T Vi + (o >> (EP - E?)), if E2 > E?
and exponent EZ™? = max
E2,Eb
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A2 ]
CNN Training with DFP-16

Table: Training configuration and ImageNet-1K classification accuracy

Model Batch-size/Epochs Baseline DFP-16
Top-1 Top-5 Top-1 Top-5
ResNet-50 1024/90 | 75.70% | 92.78% | 75.77% | 92.84%
GoogleNet-vl 1024/80 | 69.26% | 89.31% | 69.34% | 89.31%
VGG-16 256/60 | 68.23% | 88.47% | 68.12% | 88.18%
AlexNet 1024/88 | 57.43% | 80.65% | 56.94% | 80.06%

= No change in hyper-parameters, and trained in as many iterations as FP32

baseline

= Batch norm layer is in FP32

w Speed up of 1.8x over FP32 baseline for Resnet-50 on Intel®

XeonPhi™ Knights-Mill

% “Mixed Precision Training of Convolutional Neural Networks using Integer

Operations,” ICLR 2018
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Applying Optimization Precision-level

A Perturbation Theory View of Low-Precision Inference
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Applying Optimization Precision-level

A Perturbation Theory View of Low-Precision Inference
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Applying Optimization Precision-level

A Perturbation Theory View of Low-Precision Inference
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Applying Optimization Precision-level

A Perturbation Theory View of Low-Precision Inference

@ Low precision (and sparsification): adding noise to weights/activations

Need to preserve the output of each layer such that no/little loss of accuracy

8-bit weight and 8-bit activations (8a-8w) shown to work well
o ~1% loss of accuracy from FP-32 on very deep CNNs (e.g. ResNet101)

Sub-8-bit weights and/or activations incur noticeable drop in accuracy

@ Our observation:
o Not all the weights may be well-represented by sub-8-bit precision
o Not all the weights may need 8-bit precision

@ Our approach: Keep low-precision weights in a neighborhood of FP32
weights using only 8-bit activations and Ternay weights

W (FP32)
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A2 ]
Ternary Residual Inference

Ternary Weights: oW ~ W, W, = sign(W;), if [W;| > T, and 0 otherwise
E(a, T)=||W —aW|2, o*, T* = argmin E(a, T),a > 0, W, € {~1,0,+1}

«a>0,T>0
X a;Wy
) Wg + S}
O‘3W3

Theoretical understanding of sensitivity of weights and/or activations to final
classification accuracy

@ Highly sensitive layers (e.g. first conv layer) require more precision

@ We want uniform low-precision operations rather than multi-precision
Ternary Residual Edge: add more ternary edges selectively s.t.

@ More ternary compute for certain parts of the augmented network

@ Significant recovery of loss with overall less compute cost than 8a-8w

% A Kundu, K Banerjee et al., “Ternary Residual Networks, SysML 2018
DU ee PG Sep 2021 39746



Applying Optimization Precision-level

Ternary Residual Inference (contd.)

1= Further fine-tuning via block-wise ternary residual

o Partition the weights in disjoint blocks (of N elements)
o Convert to ternary, and add r number of residual blocks (if necessary)

= N and r control the model size, accuracy, and ternary compute

== \We can adjust the accuracy-compute trade-off on-the-fly during inference
(unlike other models) by disabling least important residual blocks

1= Results of Ternary Residual conversion of ResNet-101 pre-trained on

ImageNet

e Total number of blocks (without residual) is 1x
e Overall ~ 2x savings in compute cost comparing to 8a-8w with similar

accuracy
Block Size ~ 1% ~ 2%
#Blocks [ mult reduction | #Blocks [ mult reduction
N =64 2.4x 26 % 2% 32x
N = 256 2.8x 90x 2.4% 105x
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Other Works
Other Works

Function Approximation:
e o(x) = (1+ tanh(x/2))/2
e swish(x) = x.0(x) = x.(1 + tanh(x/2))/2
o GELU(x) = x.®(x) ~ 5(1 + tanh(\/2/m(x + a.x)))
% "“K-TanH: Efficient TanH for Deep Learning,” arXiv 2020
°

-
softmax(z); = Z,f —;
j=1

o Taylor series expansion till nt" order: e ~ f"(z) =37 o &

"(z)
Zj:l f7(z)

% K Banerjee et al., "Exploring Alternatives to Softmax Function,”

DeLTA 2021 (nominated for Best Poster Award)

Fault Tolerance:

@ Explore transient faults — single bit flip

@ Compare resilience of pruned and quantized deep learning models

% “Reliability Evaluation of Compressed Deep Learning Models,”

LASCAS 2020

e Taylor softmax(z); =



Open Problems Node-level

Node-level Open Problems

B =512, P=512

ma Batch Comm. |

3.0x
(13.9x) |
R R
PPy

120

Figure: Communication overtakes computation during scaling

@ Can we hide the communication time while doing computation?

@ Can we decrease the amount of gradient exchange by:
e compressing the gradients?
e using low-precision?
e sharing it intermittently?
@ How to adapt DL training for Federated learning (data stored in
local devices and not shared, e.g., in healthcare for data privacy)?
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Iz 0]
Model-level Open Problems

o soft labels
predictions

distilled| knowledge

hard labels
< true label

il | predictions
Training data

Student

@ How can we design a smaller models to achieve similar accuracy using
knowledge distillation, low-precision and/or pruning?
@ How can we devise better heuristics to avoid combinatorial explosion
while:
o searching appropriate layers?
o applying low-precision?
o tuning hyper-parameters?
@ How to design models for TinyML (loaded into micro-controllers)?
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Compiler/Kernelleve
Compiler/Kernel-level Open Problems

ES

8E [ cijp=0

ES Ci, ) +=A(i, k) * B(K, j):

ol C.update().ilek, j, i, kk, j, i, KK, JJ, II);

isolate_producer_chain(A, A_loader, A_feeder)
isolate_producer_chain(B, B_loader, B_feeder)
isolate_consumer_chain(C, C_drainer, C_unloader);
A_loader.unroll(ii).remove(jj).vioad(kk);
A_feeder.buffer(i, Buffer::Double).unroll(ii;
B_loader.unroll(j).remove(ii).vioad(kKk);
B_feeder.buffer(k, Buffer::Double).unrollj);
C.update().unroll(j, ii
forward(A_feeder, {1, 0)) forward(B_feeder, {0, 1));
C_drainer.unroll(j, ii).gather(C, {1, 0})
C_unloader.buffer(ii).unroll(ii).vstore(j);

Spatial
Mapping

Temporal to Spatial — T2S
Figure: T2S, AutoSA, HeteroCL — libraries built primarily on top of Halide to
automatically generate code for spatial architectures
@ Meta-compiler: How can we automate the process of updating these
libraries/compilers for new generations of hardware?
@ How can we adapt compiler optimizations for low power (ideally,
without sacrificing performance) to support Green Al?
@ How can we formally/semi-formally verify these compilers?
% K Banerjee et al., "A Quick Introduction to Functional Verification of
Array-Intensive Programs,” 2019
DL meets HPC Sep 2021 4446



Open Problems Precision-level

Precision-level Open Problems

Sign Range Precision
N\ N\
Y
TF32 Range

TENSOR FLOAT 32 (TF32) _

TF32 Precision

FP16

@ Can we develop a theoretical framework to argue about the various
datatypes?

@ We say that regularization induced by low precision sometimes lead to
better accuracy — however, do we really understand it?

@ Can we have hierarchical accumulators for low precision, e.g., FP8 —
FP16 — FP327
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Thank you

“Big data isn’'t about bits, it's about talent.”
— Douglas Merrill, CEQO, Zest Al

L%/ W‘/

1= https://kunalbanerjee.github.io/
3 kunal.banerjeel@walmart.com
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