# **Expediting Deep Learning with High Performance Computing**

Dr. Kunal Banerjee, SMIEEE

Staff Data Scientist Walmart Global Tech, Bangalore, India

Ex-Research Scientist Intel Labs, Bangalore, India

Doctoral Student Comp Sc & Engg, IIT Kharagpur

#### **Overview**

- Background
- Applying Optimization
  - Node-level
  - Model-level
  - Compiler/Kernel-level
  - Precision-level
- Open Problems
  - Node-level
  - Model-level
  - Compiler/Kernel-level
  - Precision-level

### **Deep Learning & HPC**

#### **Deep Learning** is now ubiquitous:

self-driving cars, voice-activated assistants, automatic machine translation, image recognition, cancer detection, market price forecasting, etc.

Table: Training time and top-1 validation accuracy with ImageNet/ResNet-50

|               | Batch Size | Processor       | DL Library | Time     | Accuracy |
|---------------|------------|-----------------|------------|----------|----------|
| He et al.     | 256        | Tesla P100×8    | Caffe      | 29 hours | 75.30%   |
| Goyal et al.  | 8K         | Tesla P100×256  | Caffe      | 21 hours | 76.30%   |
| Smith et al.  | 16K        | full TPU Pod    | TensorFlow | 30 mins  | 76.10%   |
| Akiba et al.  | 32K        | Tesla P100×1024 | Chainer    | 15 mins  | 74.90%   |
| Jia et al.    | 64K        | Tesla P40×2048  | TensorFlow | 6.6 mins | 75.80%   |
| Mikami et al. | 68K        | Tesla V100×2176 | NNL        | 224 secs | 75.03%   |

Source: news.developer.nvidia.com/sony-breaks-resnet-50-training-record-with-nvidia-v100-tensor-core-gpus/

- Jensen Huang, CEO of Nvidia

<sup>&</sup>quot;Finally, after decades of research, deep learning, the abundance of data, the powerful computation of GPUs came together in a big bang of modern Al."

# **Deep Learning & HPC**

#### **Deep Learning** is now ubiquitous:

self-driving cars, voice-activated assistants, automatic machine translation, image recognition, cancer detection, market price forecasting, etc.

Table: Training time and top-1 validation accuracy with ImageNet/ResNet-50

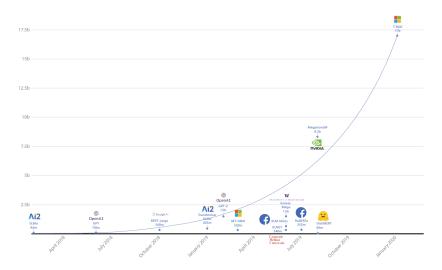
|               | Batch Size | Processor       | DL Library | Time     | Accuracy |
|---------------|------------|-----------------|------------|----------|----------|
| He et al.     | 256        | Tesla P100×8    | Caffe      | 29 hours | 75.30%   |
| Goyal et al.  | 8K         | Tesla P100×256  | Caffe      | 21 hours | 76.30%   |
| Smith et al.  | 16K        | full TPU Pod    | TensorFlow | 30 mins  | 76.10%   |
| Akiba et al.  | 32K        | Tesla P100×1024 | Chainer    | 15 mins  | 74.90%   |
| Jia et al.    | 64K        | Tesla P40×2048  | TensorFlow | 6.6 mins | 75.80%   |
| Mikami et al. | 68K        | Tesla V100×2176 | NNL        | 224 secs | 75.03%   |

 $Source: \ news. developer.nvidia.com/sony-breaks-resnet-50-training-record-with-nvidia-v100-tensor-core-gpus/source. The source of the sourc$ 

"Finally, after decades of research, deep learning, the abundance of data, the powerful computation of GPUs came together in a big bang of modern AI."

- Jensen Huang, CEO of Nvidia

# **Growing Size of Deep Learning Models**

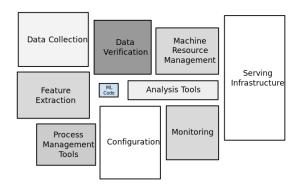


# **Growing Compute of Deep Learning Models**





### Only 5% ML Code Exists in an ML System

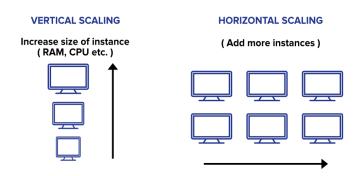


Source: Scullery et al., Hidden Technical Debt in Machine Learning Systems, NeurIPS 2015

### (Top-Down) Levels of Applying Optimization

- **Node-level:** Scaling to multiple nodes **scope:**  $> 100 \times$
- **Model-level:** Explore alternate models and/or model compression E.g.: Use EfficientNet-B0 instead of Resnet-50 **scope:**  $\sim 10 \times$
- Compiler/Kernel-level: Execute alternate optimized kernels E.g.: FFT/Winograd based convolution scope:  $\sim 3-4\times$
- Precision-level: Apply precision levels below FP32
   Nvidia Volta peak FLOPS: 15 TF vs peak OPS (in FP16): 120 TF scope: 8×
   Nvidia Ampere peak FLOPS: 19.5 TF vs peak OPS (in FP16, BFLOAT16): 312 TF (624 TF with sparsity) scope: 32×
- We explored all levels for optimization; however, model-level was explored comparatively less

### Scaling



- ✓ Vertical Scaling = Scaling Up, and Horizontal Scaling = Scaling out
- Henceforth, we are going to talk about horizontal scaling only

# Scaling (contd.)

#### Amdahl's Law

$$speedup = \frac{1}{1 - p + \frac{p}{N}}$$

where, p is the parallelizable portion, and N is the number of nodes

Example: If 80% of the process is parallizable (i.e., p=0.8) and we have 4 nodes, then

speedup = 
$$\frac{1}{1 - 0.8 + \frac{0.8}{4}} = \frac{1}{0.2 + 0.2} = \frac{1}{0.4} = 2.5$$

In words, the *speedup* will be 2.5 times compared to a single node execution.

- **Strong Scaling:** How the solution time varies with the number of processors for a fixed *total* problem size.
- **Weak Scaling:** How the solution time varies with the number of processors for a fixed problem size *per processor*.

#### Scaling GNMT on an Intel CPU Cluster

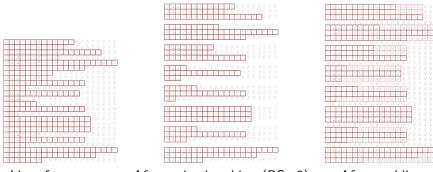


Translating English to Spanish

- Neural Machine Translation (NMT) is an approach to machine translation that uses an artificial neural networks
- Google's NMT (GNMT) is an LSTM based machine translation model
- Major steps taken to expedite training of GNMT workload:
  - LSTM optimizations on x86 architecture (will cover in kernel-level)
  - Load balancing dataset
  - Distributed training with Horovod-MLSL



#### Training Dataset - Load Imbalance Problem



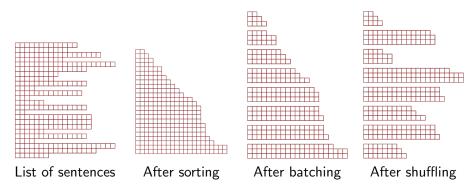
List of sentences

After naive batching (BS=3)

After padding

Lots of wasted compute due to padding to max sentence length within current batch

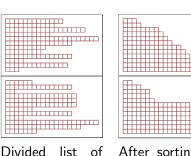
# Training Dataset – Bucketing



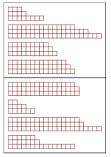
Grouping similar length sentences together in a batch reduces wasted compute due to padding

←ロト→個ト→量ト→量ト 量 めので

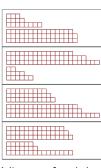
#### Multi-node Training Dataset



Divided list of After sorting on sentences across each node nodes



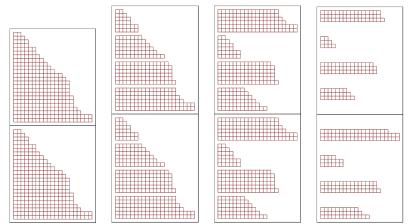
After batching & shuffling



View of global minibatch

Synchronization at gradient reduction causes wasted cycles due to different sequence length on different nodes

#### Load Balanced Multi-node Training Dataset



#### Horovod-MLSL

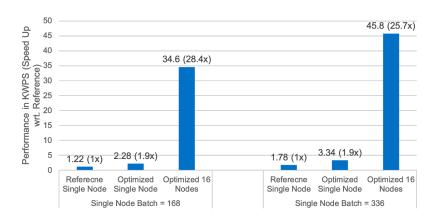
#### Horovod

- Originally designed by Uber for distribiuted deep learning using TensorFlow
- Provides concise API to modify TensorFlow model and make it run on multi-node clusters
- By default uses MPI as communication backend
- Additional communication optimizations, e.g., fusing several communication calls

Intel® Machine Learning Scaling Library (MLSL)

- We changed the MPI backend for Horovod with MLSL backend
- Trade off compute for performance by dedicating several cores to communication
- Advantageous for communication-bound models
- Currently, replaced by Intel<sup>®</sup> oneAPI Collective Communications Library (oneCCL)

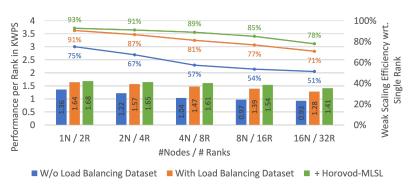
# **Summary of Performance Optimizations**



★ D Kalamkar, K Banerjee et al., "Training Google Neural Machine Translation on an Intel CPU Cluster," CLUSTER 2019



# Weal Scaling up to 16 nodes



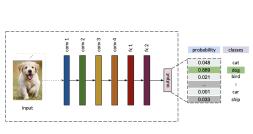
8870 weak scaling efficiency from 1 node  $\rightarrow$  16 nodes

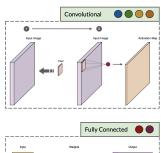
#### Strong Scaling up to 16 nodes

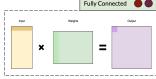


81% strong scaling efficiency from 1 node o 16 nodes

#### **Convolution Neural Networks**

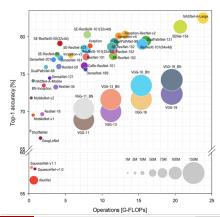






#### **Squeezing Convolution Neural Networks**

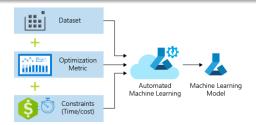
- Iandola et al., "SqueezeNet: AlexNet-level Accuracy with 50x Fewer Parameters and <0.5MB Model Size", 2016
- Researchers use *model compression* and/or variants of convolution layer (e.g., depthwise separable convolution in MobileNet)



# AutoML (Neural Architecture Search, AutoAI)

#### Goals of AutoML

- Preprocess and clean the data
- Select an appropriate model family
- Optimize model hyperparameters
- Design the topology of neural networks (if deep learning is used)
- 4 Analyze the results obtained



Source: https://softwareengineeringdaily.com/2019/05/15/introduction-to-automated-machine-learning-automl/

#### **Compilers for Deep Learning**

"The next war is compilers for the frameworks."

- Soumith Chintala, Distinguished Engineer, Facebook Al



**Google**: Tensorflow XLA & MLIR (absorbed by LLVM), **Amazon**: NNVM **Facebook**: Glow, **Intel**: nGraph (now moved to OpenVino), Apache TVM

#### **Bounds on Performance in HPC**

- **Compute-bound:** Kernel spends most of its time in calculations, e.g., matrix multiplication compute:  $O(n^3)$ , memory:  $O(n^2)$
- **Bandwidth-bound:** Kernel spends most of its time in fetching the data, e.g., matrix addition compute:  $O(n^2)$ , memory:  $O(n^2)$
- Latency-bound: Kernel spends most of its time in memory fetches without saturating the global memory bus, e.g., accessing A[B[i]]
- Bandwidth-bound and latency-bound together constitute memory-bound kernels
- ${\color{red} \mbox{\colored} \mbo$
- Personally, never worked with latency-bound kernels although these sometimes occur in HPC, e.g., FM-index based sequence search in computational-biology
- There are other types of bounds as well, e.g., I/O-bound

#### **Bounds on Performance in HPC**

- **Compute-bound:** Kernel spends most of its time in calculations, e.g., matrix multiplication – compute:  $O(n^3)$ , memory:  $O(n^2)$
- Bandwidth-bound: Kernel spends most of its time in fetching the data, e.g., matrix addition – compute:  $O(n^2)$ , memory:  $O(n^2)$
- Latency-bound: Kernel spends most of its time in memory fetches without saturating the global memory bus, e.g., accessing A[B[i]]
- Bandwidth-bound and latency-bound together constitute memory-bound kernels
- $\square$  (Normal) Convolution is compute-bound except  $1 \times 1$  convolutions, which being element-wise multiplications are memory-bound
- Personally, never worked with latency-bound kernels although these sometimes occur in HPC, e.g., FM-index based sequence search in computational-biology
- There are other types of bounds as well, e.g., I/O-bound

### **Convolution (direct)**

#### Naive convolution loop structure

```
S1: for n = 0 ... N-1 do //no. of images (minibatch)
S2: for k = 0 ... K-1 do //output feature maps
S3: for c = 0 ... C-1 do //input feature maps
S4: for oj = 0 ... P-1 do //output height
S5: for oi = 0 ... Q-1 do //output weight
S6: ij = stride * oj
S7: ii = stride * oi
S8: for r = 0 ... R-1 do //weight height
S9: for s = 0 ... S-1 do //weight width
S10: O[n][k][oj][oi] += I[n][c][ij+r][ii+s] * W[k][c][r][s]
```

- Output feature maps computed independently (data parallel fashion)
  - Block C and K loops by a factor of VLEN
  - Vectorize fused multiply-add (FMA) in line S10
- Register blocking in loops P and Q
  - Improve data reuse from registers
  - Decrease L1 traffic
  - Hide the latency of the FMA instructions

### **Convolution (direct) – after optimization**

#### Convolution with vectorization and register blocking

```
S1: C_h = C / VLEN
S2: K_b = K / VLEN
S3: P_b = P / RB_P
S4: Q_b = Q / RB_O
S5: for n = 0 ... N-1 do
  S6: for k_b = 0 ... K_{b}-1 do
    S7: for c_h = 0 ... C_{h-1} do
       S8: for oj<sub>b</sub> = 0 ... P_{b}-1 do
         S9: for oi_b = 0 \dots Q_{b-1} do
           S10: ij = stride * oj<sub>b</sub> * RB<sub>P</sub>
           S11: ii = stride * oi<sub>b</sub> * RB<sub>O</sub>
           S12: oj = oj<sub>b</sub> * RB_P
           S13: oi = oi<sub>b</sub> * RB_O
              S14: for r = 0 ... R-1 do
                 S15: for s = 0 ... S-1 do
                   S16: for k = 0 \dots VLEN do
                     S17: for c = 0 \dots VLEN do
                       S18: for p = 0 \dots RB_P do
                          S19: for q = 0 \dots RB_O do
                             S20: ij' = ij + stride * p
                            S21: ii' = ii + stride * a
                               S22: 0[n][k_b][oj+p][oi+q][k] += I[n][c_b][ij'+r][ii'+s][c] * W[k_b][c_b][r][s][c][k]
```

Tensor Layouts:

 $I[N][C_b][H][W][VLEN], \quad O[N][K_b][P][Q][VLEN], \quad W[K_b][C_b][R][S][VLEN][VLEN]$ 

# Convolution (direct) – after further optimization

#### Convolution with microkernel and layer fusion

```
S1: for n = 0 ... N-1 do  
S2: for k_b = 0 ... K_b-1 do  
S3: for c_b = 0 ... C_b-1 do  
S4: for oj_b = 0 ... Q_b-1 do  
S5: for oi_b = 0 ... Q_b-1 do  
S6: ij = stride * oi_b * RB_P  
S7: ii = stride * oi_b * RB_Q  
S8: oj = oj_b * RB_P  
S9: oi = oi_b * RB_Q  
S9: oi = oi_b * RB_Q  
S10: CONV((x)[In][c_b][ij][ii][0], (x)[(x)[(x)[(x)][(x)[(x)][(x)[(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)][(x)]
```

- ullet RB $_P$ , RB $_Q$  depend on convolution, VLEN depends on architechture  $\Longrightarrow$  JITed microkernel
- Software Prefetching (to hide latency)
  - L1 cache prefetches by same microkernel
  - L2 cache prefetches by different microkernel
- Change loop ordering to maximize data reuse
  - Eg. For R=1, S=1 convolutions, pull in  $C_b$  loop  $\Longrightarrow$  Increase output tensor reuse by a factor of  $C_b$
- Parallelization strategy  $N \times K_b \times P_b \times Q_b$  independent microkernel invocations

### **Convolution (direct) – Results**

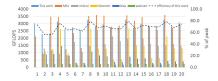


Figure: Forward Propagation on Skylake

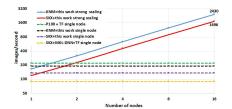
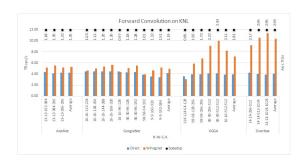


Figure: ResNet-50 training performance results

★ "Anatomy Of High-Performance Deep Learning Convolutions On SIMD Architectures," SC 2018

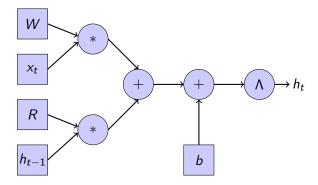
#### **Convolution using Winograd**



- Winograd a special case of Convolution having filter size  $3\times3$
- Complexity of multiplication: N.(H/m).(W/n).C.K.(m+R-1).(n+S-1), N-minibatch, (H, W) (height, width) of feature map, (m, n) (height, width) of tile, C-#input channels, K-#output channels, R=S=3 (filter size)
- ★ "Understanding the Performance of Small Convolution Operations for CNN on Intel Architecture.," SC Poster 2017

# Recurrent Neural Network (RNN)

$$h_t = \Lambda(W * x_t + R * h_{t-1} + b)$$



 $\Lambda \in \{\sigma, \text{ tanh, ReLU}\}$ , i.e., a non-linear activation function

◆ロ > ◆ 個 > ◆ 差 > ◆ 差 > り へ ②

### Long Short-Term Memory (LSTM)

$$i_{t} = \sigma(W_{i} * x_{t} + R_{i} * h_{t-1} + b_{i})$$

$$c_{t} = \tanh(W_{c} * x_{t} + R_{c} * h_{t-1} + b_{c})$$

$$f_{t} = \sigma(W_{f} * x_{t} + R_{f} * h_{t-1} + b_{f})$$

$$o_{t} = \sigma(W_{o} * x_{t} + R_{o} * h_{t-1} + b_{o})$$

$$s_{t} = f_{t} \circ s_{t-1} + i_{t} \circ c_{t}$$

$$h_{t} = o_{t} \circ \tanh(s_{t})$$

$$R_{i}$$

$$R_{c}$$

$$R_{i}$$

$$R_{$$

W;

# Long Short-Term Memory (LSTM)

$$i_{t} = \sigma(W_{i} * x_{t} + R_{i} * h_{t-1} + b_{i})$$

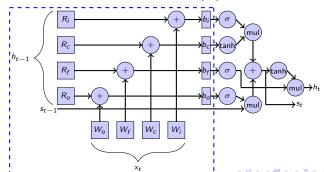
$$c_{t} = \tanh(W_{c} * x_{t} + R_{c} * h_{t-1} + b_{c})$$

$$f_{t} = \sigma(W_{f} * x_{t} + R_{f} * h_{t-1} + b_{f})$$

$$o_{t} = \sigma(W_{o} * x_{t} + R_{o} * h_{t-1} + b_{o})$$

$$s_{t} = f_{t} \circ s_{t-1} + i_{t} \circ c_{t}$$

$$h_{t} = o_{t} \circ \tanh(s_{t})$$



# Long Short-Term Memory (LSTM)

$$i_{t} = \sigma(W_{i} * x_{t} + R_{i} * h_{t-1} + b_{i})$$

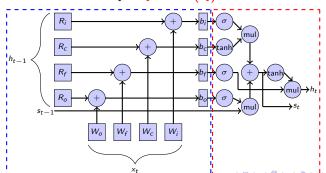
$$c_{t} = \tanh(W_{c} * x_{t} + R_{c} * h_{t-1} + b_{c})$$

$$f_{t} = \sigma(W_{f} * x_{t} + R_{f} * h_{t-1} + b_{f})$$

$$o_{t} = \sigma(W_{o} * x_{t} + R_{o} * h_{t-1} + b_{o})$$

$$s_{t} = f_{t} \circ s_{t-1} + i_{t} \circ c_{t}$$

$$h_{t} = o_{t} \circ \tanh(s_{t})$$



#### Implementation of RNN, LSTM, GRU

- Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) are special cases of RNN – same methodology applies in general
- Main computation consists of GEMMs  $W_{\{i,f,o,c\}} * x_t$  and  $R_{\{i,f,o,c\}} * h_{t-1}$
- Element-wise operations are applied to the GEMM results
- Analogous equations for back-propagation kernels
- Perform two large GEMMs (W \* x and R \* h) or one larger GEMM (WR \* xh), then perform element-wise operations
  - √ Easy to implement rely on vendor-optimized GEMM
  - Element-wise operations exposed as bandwidth-bound kernel (vs in-cache reuse of GEMM outputs)

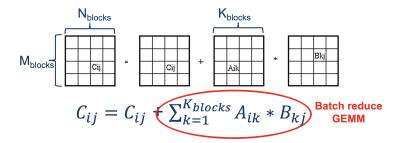
◆ロ > ◆ 個 > ◆ 差 > ◆ 差 > り へ ②

#### Implementation of RNN, LSTM, GRU

- Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) are special cases of RNN – same methodology applies in general
- Main computation consists of GEMMs  $W_{\{i,f,o,c\}} * x_t$  and  $R_{\{i,f,o,c\}} * h_{t-1}$
- Element-wise operations are applied to the GEMM results
- Analogous equations for back-propagation kernels
- Perform two large GEMMs (W \* x and R \* h) or one larger GEMM (WR \* xh), then perform element-wise operations
  - √ Easy to implement rely on vendor-optimized GEMM
  - Element-wise operations exposed as bandwidth-bound kernel (vs in-cache reuse of GEMM outputs)

→ロト→部ト→ミト→ミト ミ から○

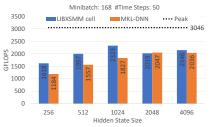
#### **Batch-Reduce GEMM**

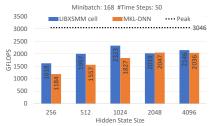


- The single batch-reduce GEMM kernel can act as the innermost kernel for a variety of deep learning topologies (CNN, RNN, LSTM, GRU, MLP) delivering SOTA performance
- Boosts **programmer productivity** which otherwise is spent tuning various kernels across different topologies
- 🖙 All code available in https://github.com/hfp/libxsmm
- ★ E Georganas, K Banerjee et al., "Harnessing Deep Learning via a Single Building Block," IPDPS 2020

# Comaprison with Intel® MKL-DNN

Intel<sup>®</sup> MKL-DNN is an open source performance library from Intel





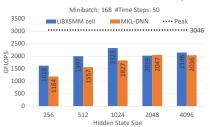
Forward pass results

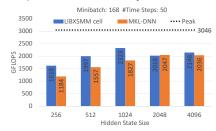
Backward/weight update pass results

- Machine: Single socket Xeon Platinum 8180 with 28 Cores
- $\bullet$  For small/medium sized problems, forward pass is up to  $1.4\times$  faster, while for backward/weight update it is up to  $1.3\times$  faster
- For large weight matrices the two approaches have similar performance because GEMM has *cubic* scaling whereas element-wise has *quadratic* scaling

# Comaprison with Intel® MKL-DNN

 $^{f f g}$  Intel $^{f f f g}$  MKL-DNN is an open source performance library from Intel





Forward pass results

Backward/weight update pass results

- ★ K Banerjee et al., "Optimizing Deep Learning LSTM Topologies onIntel Xeon Architecture," ISC 2019 (Best Research Poster – Al & ML track)
- ★ K Banerjee et al., "Optimizing Deep Learning RNN Topologies on Intel Architecture," JSFI 2019 (invited paper)

## Using Off-the-shelf Library: DeepSpeed

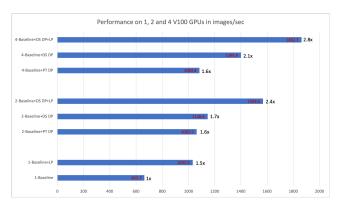


Figure: Performance of DeepSpeed's data parallelism and low-precision

- One need not be an expert just pick off-the-shelf components
- ★ "From Pixels To Words: A Scalable Journey Of Text Information From Product Images To Retail Catalog," CIKM 2021

### Low-Precision Datatype & bfloat16

Low-Precision: Any datatype below FP32

| FP32 | s 8 bit exp 23 bit mantissa |
|------|-----------------------------|
| FP16 | s 5 bit 10 bit              |
| BF16 | s 8 bit 7 bit               |

BF16 has several advantages over FP16:

- It can be seen as a short version of FP32, skipping the least significant 16 bits of mantissa
- There is no need to support denormals; FP32, and therefore also BF16, offer more than enough range for deep learning training tasks
- Hardware exception handling is not needed

Source: https://software.intel.com/sites/default/files/managed/40/8b/bf16-hardware-numerics-definition-white-paper.pdf Intel's  $3^{rd}$  Gen Intel<sup>®</sup> Xeon<sup>®</sup> Scalable processor (codenamed Cooper Lake) launched in 2020 includes bfloat16

### Deep Learning Training with bfloat16

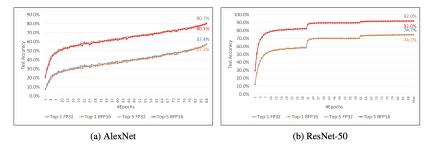


Figure: Imagenet-1K training, top-1 and top-5 validation accuracy plots for CNNs

### Deep Learning Training with bfloat16

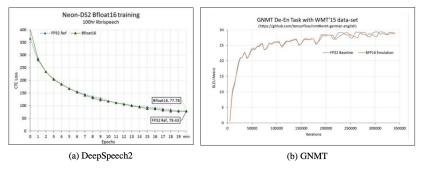


Figure: RNN training using bfloat16 data type

★ "A Study of BFLOAT16 for Deep Learning Training," 2019

### Dynamic Fixed Point-16

■ Integer based ALUs require less area and less power compared to foating point based ALUs

DFP16 s 15 bit mantissa s 15 bit mantissa s 15 bit mantissa

s 7 bit

 $E_{f_{max}} = E(\max_{\forall f \in F} |f|), F$  is a floating point tensor

15 bit mantissa

$$E_s = E_{f_{max}} - (P - 2), P$$
 is the # of bits used

$$\forall i_n \in I, f_n = i_n \times 2^{E_s}, \text{ where } f_n \in F$$

S

Multiplication: 
$$i_{ab} = i_a \times i_b$$
 and exponent  $E_s^{ab} = E_s^a + E_s^b$ 

Addition:

$$i_{a+b} = \begin{cases} i_a + (i_b >> (E_s^a - E_s^b)), & \text{if } E_s^a > E_s^b \\ i_b + (i_a >> (E_s^b - E_s^a)), & \text{if } E_s^b > E_s^a \end{cases}$$

and exponent  $E_s^{a+b} = \max_{E_s^a, E_s^b}$ 

 $E_s^a, E_s^b$   $\longleftrightarrow \Box \mapsto \longleftrightarrow \Box \mapsto \longleftrightarrow \Box \mapsto \Box \vdash \lor \bigcirc$ 

### **CNN** Training with DFP-16

 Table: Training configuration and ImageNet-1K classification accuracy

| Model        | Batch-size/Epochs | Baseline |        | Batch-size/Epochs Baseline DFP-16 |        | P-16 |
|--------------|-------------------|----------|--------|-----------------------------------|--------|------|
|              |                   | Top-1    | Top-5  | Top-1                             | Top-5  |      |
| ResNet-50    | 1024/90           | 75.70%   | 92.78% | 75.77%                            | 92.84% |      |
| GoogLeNet-v1 | 1024/80           | 69.26%   | 89.31% | 69.34%                            | 89.31% |      |
| VGG-16       | 256/60            | 68.23%   | 88.47% | 68.12%                            | 88.18% |      |
| AlexNet      | 1024/88           | 57.43%   | 80.65% | 56.94%                            | 80.06% |      |

- No change in hyper-parameters, and trained in as many iterations as FP32 baseline
- Batch norm layer is in FP32
- Speed up of 1.8× over FP32 baseline for Resnet-50 on Intel<sup>®</sup> XeonPhi<sup>™</sup> Knights-Mill
- ★ "Mixed Precision Training of Convolutional Neural Networks using Integer Operations," ICLR 2018

Sep 2021





fire engine (8a-2w)



fire engine (8a-2w)



ice bear (8a-4w)



ice bear (8a-4w)



old English sheepdog (8a-6w)



old English sheepdog (8a-6w)

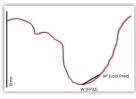


dalmatian (8a-8w)



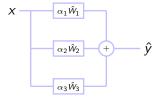
dalmatian (8a-8w)

- Low precision (and sparsification): adding noise to weights/activations
- Need to preserve the output of each layer such that no/little loss of accuracy
- 8-bit weight and 8-bit activations (8a-8w) shown to work well
  - ullet  $\sim$ 1% loss of accuracy from FP-32 on very deep CNNs (e.g. ResNet101)
- Sub-8-bit weights and/or activations incur noticeable drop in accuracy
- Our observation:
  - Not all the weights may be well-represented by sub-8-bit precision
  - Not all the weights may need 8-bit precision
- Our approach: Keep low-precision weights in a neighborhood of FP32 weights using only 8-bit activations and Ternay weights



### **Ternary Residual Inference**

Ternary Weights:  $\alpha \hat{W} \simeq W$ ,  $\hat{W}_i = sign(W_i)$ , if  $|W_i| > T$ , and 0 otherwise  $E(\alpha, T) = \|W - \alpha \hat{W}\|_F^2$ ,  $\alpha^*$ ,  $T^* = \underset{\alpha \geq 0, T \geq 0}{argmin} E(\alpha, T)$ ,  $\alpha \geq 0$ ,  $\hat{W}_i \in \{-1, 0, +1\}$ 



Theoretical understanding of sensitivity of weights and/or activations to final classification accuracy

- Highly sensitive layers (e.g. first conv layer) require more precision
- We want uniform low-precision operations rather than multi-precision

Ternary Residual Edge: add more ternary edges selectively s.t.

- More ternary compute for certain parts of the augmented network
- Significant recovery of loss with overall less compute cost than 8a-8w

★ A Kundu, K Banerjee et al., "Ternary Residual Networks," SysML 2018

K. Banerjee (Walmart Labs)

DL meets HPC

Sep 2021 39 / 46

### **Ternary Residual Inference (contd.)**

- Further fine-tuning via block-wise ternary residual
  - Partition the weights in disjoint blocks (of *N* elements)
  - Convert to ternary, and add r number of residual blocks (if necessary)
- $\mathbb{N}$  and r control the model size, accuracy, and ternary compute
- We can adjust the accuracy-compute trade-off on-the-fly during inference (unlike other models) by disabling least important residual blocks
- Results of Ternary Residual conversion of ResNet-101 pre-trained on **ImageNet** 
  - ullet Total number of blocks (without residual) is 1 imes
  - Overall  $\sim 2\times$  savings in compute cost comparing to 8a-8w with similar accuracy

| Block Size | $\sim 1\%$ |                | ~ 2%    |                |
|------------|------------|----------------|---------|----------------|
|            | #Blocks    | mult reduction | #Blocks | mult reduction |
| N = 64     | 2.4×       | 26×            | 2×      | 32×            |
| N = 256    | 2.8×       | 90×            | 2.4×    | 105×           |

4 D > 4 A > 4 B > 4 B >

#### Other Works

#### **Function Approximation:**

- $\sigma(x) = (1 + \tanh(x/2))/2$
- $swish(x) = x.\sigma(x) = x.(1 + tanh(x/2))/2$
- GELU(x) = x. $\Phi(x) \approx \frac{x}{3}(1 + \tanh(\sqrt{2/\pi}(x + a.x^3)))$
- ★ "K-TanH: Efficient TanH for Deep Learning," arXiv 2020
  - softmax(z)<sub>i</sub> =  $\frac{e^{z_i}}{\sum_{i=1}^{K} e^{z_j}}$
- Taylor series expansion till  $n^{\text{th}}$  order:  $e^z \approx f^n(z) = \sum_{i=0}^n \frac{z^i}{i!}$
- Taylor softmax(z)<sub>i</sub> =  $\frac{f^n(z_i)}{\sum_{i=1}^K f^n(z_i)}$
- ★ K Banerjee et al., "Exploring Alternatives to Softmax Function," DeLTA 2021 (nominated for Best Poster Award)

#### Fault Tolerance:

- Explore transient faults single bit flip
- Compare resilience of pruned and quantized deep learning models
- ★ "Reliability Evaluation of Compressed Deep Learning Models." LASCAS 2020

Sep 2021

### **Node-level Open Problems**

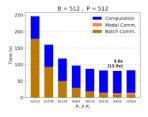
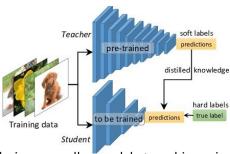


Figure: Communication overtakes computation during scaling

- Can we hide the communication time while doing computation?
- Can we decrease the amount of gradient exchange by:
  - compressing the gradients?
  - using low-precision?
  - sharing it intermittently?
- How to adapt DL training for Federated learning (data stored in local devices and not shared, e.g., in healthcare for data privacy)?

### Model-level Open Problems



- How can we design a smaller models to achieve similar accuracy using knowledge distillation, low-precision and/or pruning?
- How can we devise better heuristics to avoid combinatorial explosion while:
  - searching appropriate layers?
  - applying low-precision?
  - tuning hyper-parameters?
- How to design models for TinyML (loaded into micro-controllers)?

### Compiler/Kernel-level Open Problems

Temporal to Spatial → T2S

**Figure:** T2S, AutoSA, HeteroCL – libraries built primarily on top of Halide to automatically generate code for spatial architectures

- Meta-compiler: How can we automate the process of updating these libraries/compilers for new generations of hardware?
- How can we adapt compiler optimizations for low power (ideally, without sacrificing performance) to support Green AI?
- How can we formally/semi-formally verify these compilers?
- ★ K Banerjee et al., "A Quick Introduction to Functional Verification of Array-Intensive Programs," 2019

**Open Problems** 

### **Precision-level Open Problems**



- Can we develop a theoretical framework to argue about the various datatypes?
- We say that regularization induced by low precision sometimes lead to better accuracy - however, do we really understand it?
- ullet Can we have hierarchical accumulators for low precision, e.g., FP8  $\to$  $FP16 \rightarrow FP32?$

"Big data isn't about bits, it's about talent."

– Douglas Merrill, CEO, Zest Al

Thank you!

https://kunalbanerjee.github.io/

kunal.banerjee1@walmart.com