Expediting Deep Learning with
High Performance Computing

Dr. Kunal Banerjee, SMIEEE

Staff Data Scientist
Walmart Global Tech, Bangalore, India

Ex-Research Scientist
Intel Labs, Bangalore, India

Doctoral Student
Comp Sc & Engg, IIT Kharagpur

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021 1/46

Overview

© Background

e Applying Optimization
@ Node-level
@ Model-level
o Compiler/Kernel-level
@ Precision-level

© Open Problems
@ Node-level
@ Model-level
o Compiler/Kernel-level
@ Precision-level

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021 2/46

2o (S TR R
Deep Learning & HPC

Deep Learning is now ubiquitous:
self-driving cars, voice-activated assistants, automatic machine translation,
image recognition, cancer detection, market price forecasting, etc.

Table: Training time and top-1 validation accuracy with ImageNet/ResNet-50

Batch Size Processor DL Library Time Accuracy

He et al. 256 Tesla P100x8 Caffe 29 hours 75.30%
Goyal et al. 8K Tesla P100x256 Caffe 21 hours 76.30%
Smith et al. 16K full TPU Pod TensorFlow 30 mins 76.10%
Akiba et al. 32K Tesla P100x 1024 Chainer 15 mins 74.90%
Jia et al. 64K Tesla P40x2048 TensorFlow 6.6 mins 75.80%
Mikami et al. 68K Tesla V100x2176 NNL 224 secs 75.03%

Source: news.developer.nvidia.com/sony-breaks-resnet-50-training-record-with-nvidia-v100-tensor-core-gpus/

K. Banerjee (Walmart Labs)

DL meets HPC

Sep 2021

3/46

news.developer.nvidia.com/sony-breaks-resnet-50-training-record-with-nvidia-v100-tensor-core-gpus/

2o (S TR R
Deep Learning & HPC

Deep Learning is now ubiquitous:
self-driving cars, voice-activated assistants, automatic machine translation,
image recognition, cancer detection, market price forecasting, etc.

Table: Training time and top-1 validation accuracy with ImageNet/ResNet-50

Batch Size Processor DL Library Time Accuracy

He et al. 256 Tesla P100x8 Caffe 29 hours 75.30%
Goyal et al. 8K Tesla P100x256 Caffe 21 hours 76.30%
Smith et al. 16K full TPU Pod TensorFlow 30 mins 76.10%
Akiba et al. 32K Tesla P100x 1024 Chainer 15 mins 74.90%
Jia et al. 64K Tesla P40x2048 TensorFlow 6.6 mins 75.80%
Mikami et al. 68K Tesla V100x2176 NNL 224 secs 75.03%

Source: news.developer.nvidia.com/sony-breaks-resnet-50-training-record-with-nvidia-v100-tensor-core-gpus/

“Finally, after decades of research, deep learning, the abundance of data, the
powerful computation of GPUs came together in a big bang of modern Al.”

— Jensen Huang, CEO of Nvidia
DL meets HPC Sep2021 3,46

news.developer.nvidia.com/sony-breaks-resnet-50-training-record-with-nvidia-v100-tensor-core-gpus/

22 (T O D7
Growing Size of Deep Learning Models

m

10b

/

(5]
Ai2 Openal
e oot
P Tiom

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021 4/46

2o (S TR R
Growing Compute of Deep Learning Models

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute (Log Scale)

Petaflop/s-days

le+h
AlphaGoZero s
1e+3
o
AlphaZero
etz Neural Machine
.
Translation
, Neural Architecture
Search
letl
o
e TI7 Dota 1vl
Xception
1e+0
DeepSpeech?2
.
le-1 VGG, .
©Seq2Seq ResNets
Visualizing and .
1e-2 Understanding Conv ggogleNet
AlexNet Nets
B .
o
le-3 Dropout
3.4-month doubling
le-4
*DQN
le-5
2012 2013 2014 2015 2016 2017 2018

DL meets HPC Sep 2021 5/46

Only 5% ML Code Exists in an ML System

Data Collection|

Feature
Extraction

Background

Deep Learning & HPC

Machine
Resource
Management

ML i
— Analysis Tools

Process
Management]|
Tools

Configuration|

Monitoring

Serving
Infrastructure

Source: Scullery et al., Hidden Technical Debt in Machine Learning Systems, NeurlPS 2015

K. Banerjee (Walmart Labs)

DL meets HPC

Sep 2021

6/46

2o (S TR R
(Top-Down) Levels of Applying Optimization

Node-level: Scaling to multiple nodes — scope: > 100x

Model-level: Explore alternate models and/or model compression
E.g.: Use EfficientNet-B0 instead of Resnet-50 — scope: ~ 10x

Compiler/Kernel-level: Execute alternate optimized kernels

E.g.: FFT/Winograd based convolution — scope: ~ 3 — 4x

o Precision-level: Apply precision levels below FP32

Nvidia Volta — peak FLOPS: 15 TF vs peak OPS (in FP16): 120 TF
— scope: 8x

Nvidia Ampere — peak FLOPS: 19.5 TF vs peak OPS (in FP16,
BFLOAT16): 312 TF (624 TF with sparsity) — scope: 32X

= \We explored all levels for optimization; however, model-level was
explored comparatively less

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021 7/46

Applying Optimization Node-level

Scaling

VERTICAL SCALING HORIZONTAL SCALING
Increase size of instance (Add more instances)
(RAM, CPU etc.)

J A—.
y —

[
- =

1= Vertical Scaling = Scaling Up, and Horizontal Scaling = Scaling out

v

1= Henceforth, we are going to talk about horizontal scaling only

K. Banerjee (Walmart Labs) DL meets HPC

Sep 2021 8/46

Node-level
Scaling (contd.)

Amdahl’s Law
1
L= s

where, p is the parallelizable portion, and N is the number of nodes

speedup =

Example: If 80% of the process is parallizable (i.e., p = 0.8) and we have 4
nodes, then
1 1

1
d — — = — =
P T 1 08+ 28 T 02+02 04

25

In words, the speedup will be 2.5 times compared to a single node execution.
1= Strong Scaling: How the solution time varies with the number of
processors for a fixed total problem size.
1= \Weak Scaling: How the solution time varies with the number of
processors for a fixed problem size per processor.
DL meets HPC Sep 2021 9/46

(ot
Scaling GNMT on an Intel CPU Cluster

the cat likes
= -

el gato le gusta
- Demder -

L R

s

Translating English to Spanish

@ Neural Machine Translation (NMT) is an approach to machine
translation that uses an artificial neural networks

o Google's NMT (GNMT) is an LSTM based machine translation model

@ Major steps taken to expedite training of GNMT workload:

@ LSTM optimizations on x86 architecture (will cover in kernel-level)
@ Load balancing dataset
© Distributed training with Horovod-MLSL

DL meets HPC Sep 2021 10746

Applying Optimization Node-level

Load Balancing Dataset

Training Dataset — Load Imbalance Problem

T T T

A A A I I A T T
T I A A A A
11
I
[TTTTTT]
MTATTTTT]
T
[TTTTT]
[TTTTTTTT]
17
T TTTTTTT

A A B

After padding

Lots of wasted compute due to padding to max sentence length within
current batch

DL meets HPC Sep2021 11746

Applying Optimization Node-level

Load Balancing Dataset

Training Dataset — Bucketing

- AT, i

]

List of sentences After sorting After batching After shuffling

Grouping similar length sentences together in a batch reduces wasted
compute due to padding

DL meets HPC Sep2021 11746

Applying Optimization Node-level

Load Balancing Dataset

Multi-node Training Dataset

Il
[TTTTTT]

T TTTTT
INNNN]

[TTTTT]
[TTTTTTTT]

Divided list of After sorting on After batching & View of global
sentences across each node shuffling minibatch
nodes

Synchronization at gradient reduction causes wasted cycles due to
different sequence length on different nodes

DL meets HPC Sep2021 11746

Applying Optimization Node-level

Load Balancing Dataset

Load Balanced Multi-node Training Dataset

111
mEnnn|
ImN]

NN

11
mnnn|
11T
ot

Each node processes full list of sentences and picks global minibatch from
a given bucket — then selects its own portion fromglobal batch

DL meets HPC Sep 2021 11746

Node-level
Horovod-MLSL

Horovod
@ Originally designed by Uber for distribiuted deep learning using
TensorFlow

@ Provides concise APl to modify TensorFlow model and make it run on
multi-node clusters

o By default uses MPI as communication backend

@ Additional communication optimizations, e.g., fusing several
communication calls

Intel® Machine Learning Scaling Library (MLSL)
@ We changed the MPI backend for Horovod with MLSL backend

@ Trade off compute for performance by dedicating several cores to
communication

@ Advantageous for communication-bound models

o Currently, replaced by Intel® oneAPI Collective Communications
Library (oneCCL)

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021 12 /46

Applying Optin ion Node-level

Summary of Performance Optimizations

o
o

a 45.8 (25.7x)
D 45
o
8 40
=3 4.6 (28.4x
\‘/’,?35 34.6 (28.4x)
P 230
5
i S 25
= z 20
g 315
E 10
2 3.34 (1.9x)
$ 5 q22(1x) 228(1.%) 1.78 (1x) >34 0
0 — || | -
Referecne Optimized Optimized 16 Referecne Optimized Optimized 16
Single Node Single Node Nodes Single Node Single Node Nodes
Single Node Batch = 168 Single Node Batch = 336

% D Kalamkar, K Banerjee et al., “Training Google Neural Machine
Translation on an Intel CPU Cluster,” CLUSTER 2019

DL meets HPC Sep 2021 13746

Node-level

Weal Scaling up to 16 nodes

4 93% 91%
6 89% 5%

57% 54%
1.5

Performance per Rank in KWPS
[=Y

IN/2R 2N /4R 4N/ 8R 8N/ 16R
#Nodes / # Ranks

0

3.5 9
81%
75% 77%
2.5 67% 71%
2

51%

16N / 32R

100%
80%
60%

40%

Single Rank

20%

°

0%

Weak Scaling Efficiency wrt.

B W/o Load Balancing Dataset ™ With Load Balancing Dataset ™ + Horovod-MLSL

= 78% weak scaling efficiency from 1 node — 16 nodes

K. Banerjee (Walmart Labs) DL meets HPC

Sep 2021

14/ 46

e
Strong Scaling up to 16 nodes

(2]
70 ~ 3
2 60 o 00
s n w0
¥ 50 0) 5 p=d <
£ " o : a
© 40 o5 o0 & 0
g o By ES s Iz
30 N ~
£
5 20
S 10 II I
a.
0
1 16 2 4 8 16 16
Batch Size = 1344 Batch Size = 2688 Batch Size = 5376

Nodes

M 4 Layer Model 8 Layer Model

iz 81% strong scaling efficiency from 1 node — 16 nodes

DL meets HPC Sep 2021 15746

Applying Optimization Model-level

Convolution Neural Networks

i
« o o % I
2z z 2z 2 e~ |
g &8 8 8 & & | probability classes
|
VT 0048 1 cat
T e |
5[| WDESSONE, GG
% y ! 0021 | bird
[
41 000t i ar
N 003] ship
I~
I
|
1

K. Banerjee (Walmart Labs) DL meets HPC

Convolutional 00 @
(2]

ot image oputmage Actvaton oo

Sep 2021

16 /46

Squeezing Convolution Neural Networks

landola et al.,
Parameters and <0.5MB Model Size"
v Researchers use model compression and/or variants of convolution

Applying Optin ion Model-level

“SqueezeNet: AlexNet-level Accuracy with 50x Fewer

, 2016

layer (e.g., depthwise separable convolution in MobileNet)

K. Banerjee (Walmart Labs)

Top-1 accuracy [%]

NAsNetAdarge
SE-RosiNeX.-101(32x4d)
8 i Reshe2 e
by et Pt ApamNex 131
| J o o estet-152 xx 101(64x4d)
SE-Restel 80 \uwnrw o 01 (c2x R esNat-152
IensoNet-201@ Wanmatr 101 @et 101 QEBLRestot152
@restets0 ‘uu. ResNet-101 6619 BN
75 o DuPatiiet 68 DenseNet-169 V66-16_BN
Densetet121
obile
V66-13_ BN
V66-11.8N
V66-19
01, @Rt 66-16
MobileNet-v1
G6-13
ShuffeNet V6G-11
o,
oogenet
M SM TOM SOM 7SM. 100M 150M
SqueezeNetv1.1
.
@ et
55
0 5 10 15 2 2

Operations [G-FLOPs]
DL meets HPC

Sep 2021

17 /46

Modelleve
AutoML (Neural Architecture Search, AutoAl)

Goals of AutoML
© Preprocess and clean the data
@ Select an appropriate model family
© Optimize model hyperparameters
© Design the topology of neural networks (if deep learning is used)

© Analyze the results obtained

]
H Dataset
=mE

Optimization L{!}
Metric

Automated Machine Learning
Machine Learning Model

?’:'?‘ Constraints
<1\ (Timefcost)
Source: https://softwareengineeringdaily.com/2019/05/15/introduction-to-automated-machine-learning-automl/

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021 18 /46

https://softwareengineeringdaily.com/2019/05/15/introduction-to-automated-machine-learning-automl/

Applying Optimization Compiler/Kernel-level

Compilers for Deep Learning

“The next war is compilers for the frameworks.”
— Soumith Chintala, Distinguished Engineer, Facebook Al

Caffe

@xnet
Keras\ Wlndows
1 4444.<i9Lmux
TensorFlow
macOS

ONNX

Google: Tensorflow XLA & MLIR (absorbed by LLVM), Amazon: NNVM
Facebook: Glow, Intel: nGraph (now moved to OpenVino), Apache TVM

DL meets HPC Sep 2021 19746

Applying Optimization Compiler/Kernel-level

Bounds on Performance in HPC

@ Compute-bound: Kernel spends most of its time in calculations,
e.g., matrix multiplication — compute: O(n®), memory: O(n?)

o Bandwidth-bound: Kernel spends most of its time in fetching the
data, e.g., matrix addition — compute: O(n?), memory: O(n?)

o Latency-bound: Kernel spends most of its time in memory fetches
without saturating the global memory bus, e.g., accessing A[B[i]]

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021 20/46

Applying Optimization Compiler/Kernel-level

Bounds on Performance in HPC

@ Compute-bound: Kernel spends most of its time in calculations,
e.g., matrix multiplication — compute: O(n3), memory: O(n?)

o Bandwidth-bound: Kernel spends most of its time in fetching the
data, e.g., matrix addition — compute: O(n?), memory: O(n?)

o Latency-bound: Kernel spends most of its time in memory fetches
without saturating the global memory bus, e.g., accessing A[B[i]]

1 Bandwidth-bound and latency-bound together constitute
memory-bound kernels

i (Normal) Convolution is compute-bound except 1 x 1 convolutions,
which being element-wise multiplications are memory-bound

1= Personally, never worked with latency-bound kernels although these
sometimes occur in HPC, e.g., FM-index based sequence search in
computational-biology

i There are other types of bounds as well, e.g., 1/O-bound

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021 20/46

Compiler/Kernelleve
Convolution (direct)

Naive convolution loop structure

S1: for n = 0 ... N-1 do //no. of images (minibatch)
S2: for k = 0 ... K-1 do //output feature maps
S3: for ¢ = 0 ... C-1 do //input feature maps

S4: for oj = 0 ... P-1 do //output height
S5: for oi = 0 ... Q-1 do //output weight
S6: ij = stride * oj
S7: ii = stride * oi
S8: for r = 0 ... R-1 do //weight height
S9: for s = 0 ... S-1 do //weight width
S$10: O[n] [k] [0j][oi] += I[n][cllij+r][ii+s] * W[k] [c][x][s]

@ Output feature maps computed independently (data parallel fashion)
o Block C and K loops by a factor of VLEN
o Vectorize fused multiply-add (FMA) in line S10
@ Register blocking in loops P and Q
e Improve data reuse from registers
o Decrease L1 traffic
e Hide the latency of the FMA instructions

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021 21/46

Compiler/Kernelleve
Convolution (direct) — after optimization

Convolution with vectorization and register blocking

S1: Cp, = C / VLEN
$2: Kp = K / VLEN
S3: P, =P / RBp
S4: Qp = Q / RBg
S5: for n = 0 ... N-1 do
S6: for k, = 0 ... Kp-1 do
S7: for ¢, =0 ... Cp-1 do
S8: for ojp = 0 ... Pu-1 do
S9: for oip = 0 ... Qp-1 do

S10: ij = stride * oj, * RBp

S11: ii = stride * oip * RBgQ
S12: oj = ojp * RBp
S13: oi = oip * RBg
S14: for r = 0 ... R-1 do
$15: for s = 0 ... S-1 do
S16: for k = 0 ... VLEN do
S17: for ¢ = 0 ... VLEN do
S18: for p = 0 . RBp do
S19: for q = 0 ... RBg do
$20: ij’ = ij + stride * p
S21: ii’ = ii + stride * q

$22: 0[n] [kp] [oj+p] [oi+q] [k] += T[n][cp] [ij/+r] [ii’+s][c] * Wlky] [cp] [x] [s] [c] [k]
v

Tensor Layouts:

IINJ[C][HIIW][VLEN], O[N][K,][P][QI[VLEN], W[K,][CH][R][S][VLEN][VLEN]

K. Banerjee (Walmart Labs) DL meets HPC

Sep 2021

22 /46

Applying Optimization Compiler/Kernel-level

Convolution (direct) — after further optimization

Convolution with microkernel and layer fusion

S1: for n = 0 ... N-1 do

S2: for k, = 0 ... Kp-1 do

S3: for ¢, =0 ... Cp-1 do
S4: for ojp, = 0 ... Pyp-1 do
S56: for oip = 0 ... Qp-1 do
S6: ij stride * oj, * RBp

ii stride * oi, * RBg
ojp * RBp
89: oi = oip * RBQ
S10: CONV(&I[n][cp][ijl[iil[0], &W(lkp][cp][0]L[0][0][0], &0[n] [ky][oj][oil[0])
S11: if fuse(L()) AND cp == Cp-1 then

S12: APPLY (L(), &O0[n] [kb] [0j] [0i] [0]))

v

@ RBp, RB(depend on convolution, VLEN depends on architechture => JITed microkernel

@ Software Prefetching (to hide latency)
@ L1 cache prefetches — by same microkernel
@ L2 cache prefetches — by different microkernel

@ Change loop ordering to maximize data reuse

@ Eg. For R=1, S=1 convolutions, pull in C, loop = Increase output tensor reuse

by a factor of Cj
@ Parallelization strategy — Nx Ky, xP,xQp independent microkernel invocations

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021

23 /46

Applying Optimization Compiler/Kernel-level

Convolution (dire

ct) — Results

" 100.0

4000 =

3500

3000 |, - . £a0
w2500 | LA 600
S 2000 bl a
6 1500 00 S
1000 ‘ ‘ 200

500 |

p Hy |\ ‘|, o \“l k |‘|.|, I e s B 00

Figure: Forward Propagation on Skylake

3200

1600

images/second

1234567 8 91011121314151617 1819 20

——KNM#this work strong scaling
——sKsthis work strong scaling
—-P100 + TF single node To96
== KNMithis work single node
=~ -SKt4this work single node

- -SKX+MKL-DNN+TF single node

H

Figure: ResNet-50 training performance results

Number of nodes

% “Anatomy Of High-Performance Deep Learning Convolutions On SIMD

Architectures,” SC 201

K. Banerjee (Walmart Labs)

8

DL meets HPC

Sep 2021

24/46

Ca LG
Convolution using Winograd

Forward Convolution on KNL

@ Winograd — a special case of Convolution having filter size 3x3

@ Complexity of multiplication: N.(H/m).(W/n).C.K.(m+R-1).(n+S-1), N -
minibatch, (H, W) - (height, width) of feature map, (m, n) - (height, width)
of tile, C - #input channels, K - #output channels, R = S = 3 (filter size)

% ‘“Understanding the Performance of Small Convolution Operations for CNN
on Intel Architecture.,” SC Poster 2017

DL meets HPC Sep 2021 25746

Compier/Kernel-leve
Recurrent Neural Network (RNN)

ht:/\(W*Xt‘FR*htfl‘f‘b)

>
Xt
H——@n
>0
he—1 b

A € {o, tanh, ReLU}, i.e., a non-linear activation function

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021

26 /46

Compier/Kernel-leve
Long Short-Term Memory (LSTM)

ir = o(Wj* x¢ + Ri x hy—1 + bj)
¢t = tanh(We * x¢ + Re % he—1 + bc)
fe = o(Wr % x¢ + Re % he—1 + by)
or = o(Wo * x¢ + Ro * hy—1 + bo)
st =ftost 1 +iroc
hy = oy o tanh(s;)

7] S—Ep(©)
RC
R

l

&
=] o
\\\‘4_\\v/,_44///

Xt

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021

®
¢

®
O
®

St

-

H

27 /46

Compier/Kernel-leve
Long Short-Term Memory (LSTM)

it = o(W s x¢ + R % he—1 + b;)
¢t = tanh(We % x¢ + Re * he—1 + bc)
fe = o(Wr % x¢ + Re % he—1 + by)
or = o(Wo * x¢ + Ro * hy—1 + bo)
st =ftost 1 +iroc
hy = oy o tanh(s;)

1

1

1

:hH ’E N
i [~] ®
1

l

:

1

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021 27 /46

Compier/Kernel-leve
Long Short-Term Memory (LSTM)

ir =o(W; * x¢ + R; * hy_1 + b;)
¢t =tanh(W, % x¢ + Re * ht—1 + bc)
fe =o(Wr * x¢ + Re x he_1 + br)
or =0 (Wp * x¢ + Ro % hy—1 + by)
st =fros 1+ itoct
hy =o¢ o tanh(s;)

1
! :
1
. 1
1 Re :
:h‘*1 1
1
1 R,
. [~} |
! \
: .
1
1 Si_1
| ‘ !
: .
| 1
| 1
| 1
| 1

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021 27 /46

oty e
Implementation of RNN, LSTM, GRU

o Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)
are special cases of RNN — same methodology applies in general

Main computation consists of GEMMs W(; ¢, ¢} * x¢ and
R{i,f,o,c} * ht—l
Element-wise operations are applied to the GEMM results

Analogous equations for back-propagation kernels

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021 28 /46

oty e
Implementation of RNN, LSTM, GRU

o Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)
are special cases of RNN — same methodology applies in general

@ Main computation consists of GEMMs W(; ¢ ¢} * x¢ and
R{i,f,o,c} * he 1

@ Element-wise operations are applied to the GEMM results

@ Analogous equations for back-propagation kernels

e Perform two large GEMMs (W % x and R x h) or one larger GEMM
(WR x xh), then perform element-wise operations

Easy to implement — rely on vendor-optimized GEMM
X Element-wise operations exposed as bandwidth-bound kernel (vs
in-cache reuse of GEMM outputs)

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021 28 /46

Compiler/Kernel-level
Batch-Reduce GEMM

N blocks Kblocks

Bkj

= + L
Mb|OCkS Ci]' Cij | Adkl

Batch reduce
GEMM

Cij -

1 The single batch-reduce GEMM kernel can act as the innermost

kernel for a variety of deep learning topologies (CNN, RNN, LSTM,

GRU, MLP) delivering SOTA performance
= Boosts programmer productivity which otherwise is spent tuning
various kernels across different topologies
= All code available in https://github.com/hfp/libxsmm
% E Georganas, K Banerjee et al., “Harnessing Deep Learning via a
Single Building Block,” IPDPS 2020
DL meets HPC Sep 2021

29 /46

https://github.com/hfp/libxsmm

Comaprison with Intel® MKL-DNN

= Intel® MKL-DNN is an open source performance library from Intel

Minibatch: 168 #Time Steps: 50

3500 = BXSMM cell mm MKL-DNN
3000 sesssessesesssssssssessssesssssesesssssssnnss
2500
& 2000
2
% 1500
1000
500
0
1024 2048

Hidden State Size

Forward pass results

«ee Peak 3500
------ 3046 3000
2500
£ 2000

2
& 1500
1000
500
0

4096

Minibatch: 168 #Time Steps: 50

. |BXSMM cell = MKL-DNN «ees Peak

1024 2048 4096

Hidden State Size

Backward /weight update pass results

@ Machine: Single socket Xeon Platinum 8180 with 28 Cores
@ For small/medium sized problems, forward pass is up to 1.4x faster,
while for backward /weight update it is up to 1.3x faster

@ For large weight matrices the two approaches have similar
performance because GEMM has cubic scaling whereas element-wise

has quadratic scaling

K. Banerjee (Walmart Labs)

DL meets HPC

Sep 2021

30/46

Comaprison with Intel® MKL-DNN

i Intel® MKL-DNN is an open source performance library from Intel

Minibatch: 168 #Time Steps: 50

3500 . LUBXSMM cell mmmMKL-DNN <ev Peak 3500
3000 eeeeeeessreseesaesesrennes .- 3046 3000
2500 2500
& 2000 £ 2000

S 2
& 1500 & 1500
1000 1000
500 500
0 0

1024 2048 4096

Hidden State Size

Forward pass results

% K Banerjee et al., "Optimizing Deep Learning LSTM Topologies

Minibatch: 168 #Time Steps: 50

. LIBXSMM cell = MKL-DNN eees Peak

1024 2048 4096

Hidden State Size

Backward /weight update pass results

onlntel Xeon Architecture,” I1SC 2019 (Best Research Poster — Al &

ML track)

% K Banerjee et al., "Optimizing Deep Learning RNN Topologies on
Intel Architecture,” JSFI 2019 (invited paper)

K. Banerjee (Walmart Labs)

DL meets HPC

Sep 2021

30/46

Gl =]
Using Off-the-shelf Library: DeepSpeed

Performance on 1, 2 and 4 V100 GPUs in images/sec

4-Baseline+DS DP+LP 2.8x

4-Baseline+DS DP

2.1x

a-saseline++7 07 | 1.6x

2aseines0s or+t7 - S .
2aaseinesos o7 | 1.7«
n—lg

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure: Performance of DeepSpeed'’s data parallelism and low-precision

1= One need not be an expert — just pick off-the-shelf components
% “From Pixels To Words: A Scalable Journey Of Text Information
From Product Images To Retail Catalog,” CIKM 2021

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021

31/46

Fre
Low-Precision Datatype & bfloat16

Low-Precision: Any datatype below FP32
FP32 s 8 bit exp 23 bit mantissa

FP16 s 5 bit 10 bit
BF16 s 8 bit 7 bit

BF16 has several advantages over FP16:

@ It can be seen as a short version of FP32, skipping the least significant 16 bits of
mantissa

@ There is no need to support denormals; FP32, and therefore also BF16, offer more
than enough range for deep learning training tasks

@ Hardware exception handling is not needed

Source: https://software.intel.com/sites/default/files/managed /40/8b /bf16-hardware-numerics-definition-white-paper.pdf
Intel's 3 Gen Intel® Xeon® Scalable processor (codenamed Cooper Lake) launched in
2020 includes bfloat16

Source: https://www.intel.in/content/www/in/en/products/docs/processors/xeon/3rd-gen-xeon-scalable-processors-brief.html|

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021 32/46

A2]
Deep Learning Training with bfloat16

#Epochs

~Top-1FP32 —Top-1BFP16 —Top-5FP32 —Top-5BFP16

80.7% 92.0%

90.0% Py

0.1% 80.0% 748.7%
57.4%

Test Accuracy

#Epochs

~Top-1FP32 —Top-1BFP16 —Top-5FP32 —Top-5 BFP16

(a) AlexNet

(b) ResNet-50

Figure: Imagenet-1K training, top-1 and top-5 validation accuracy plots for CNNs

K. Banerjee (Walmart Labs)

DL meets HPC

Sep 2021

33/46

A2]
Deep Learning Training with bfloat16

Neon-DS2 Bfloat16 training

100hr librispeech GNMT De-En Task with WMT'15 data-set
P 30
4 FP32Ret —a—Blcatte
) A S
» A
- , Fr32Buseline —8FP16 Emulation
) !
2% .
" A] [
8 s 15
=200 L 2 |
g . - | /
150 s 0] [
4 + |
i [
10 — "
e SN
0 [Fan s} oM
| 111 - 0 0 1000 1500 20000 20000 30000 35000
0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 min esony
epochs
(a) DeepSpeech2 (b) GNMT

Figure: RNN training using bfloat16 data type

% “A Study of BFLOAT16 for Deep Learning Training,” 2019

DL meets HPC Sep 2021 34746

A2]
Dynamic Fixed Point-16

= |Integer based ALUs require less area and less power compared to foating point
based ALUs

s 15 bit mantissa

s 15 bit mantissa
DFP16 s 7 bit
S 15 bit mantissa

s 15 bit mantissa

E. = E(g}a)}§|f|), F is a floating point tensor
€
E, = E;,, — (P —2),P is the # of bits used
Vin € I, f, = in x 25 where f, € F
Multiplication: i, = iz X ip and exponent E?* =E? + E?
Addition:
. in+ (iy >> (E? — E?)), if E2 > E?
fatp =
T Vi + (o >> (EP - E?)), if E2 > E?
and exponent EZ™? = max
E2,Eb

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021 35/46

A2]
CNN Training with DFP-16

Table: Training configuration and ImageNet-1K classification accuracy

Model Batch-size/Epochs Baseline DFP-16
Top-1 Top-5 Top-1 Top-5
ResNet-50 1024/90 | 75.70% | 92.78% | 75.77% | 92.84%
GoogleNet-vl 1024/80 | 69.26% | 89.31% | 69.34% | 89.31%
VGG-16 256/60 | 68.23% | 88.47% | 68.12% | 88.18%
AlexNet 1024/88 | 57.43% | 80.65% | 56.94% | 80.06%

= No change in hyper-parameters, and trained in as many iterations as FP32

baseline

= Batch norm layer is in FP32

w Speed up of 1.8x over FP32 baseline for Resnet-50 on Intel®

XeonPhi™ Knights-Mill

% “Mixed Precision Training of Convolutional Neural Networks using Integer

Operations,” ICLR 2018

K. Banerjee (Walmart Labs) DL meets HPC

Sep 2021 36 /46

Applying Optimization Precision-level

A Perturbation Theory View of Low-Precision Inference

DL meets HPC Sep 2021 37746

Applying Optimization Precision-level

A Perturbation Theory View of Low-Precision Inference

fire engine (8a-2w)

DL meets HPC Sep 2021 37746

Applying Optimization Precision-level

A Perturbation Theory View of Low-Precision Inference

fire engine (8a-2w)

DL meets HPC Sep 2021 37746

Applying Optimization Precision-level

A Perturbation Theory View of Low-Precision Inference

ice bear (8a-4w)

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021

37/46

Applying Optimization Precision-level

A Perturbation Theory View of Low-Precision Inference

ice bear (8a-4w)

DL meets HPC Sep 2021 37746

Applying Optimization Precision-level

A Perturbation Theory View of Low-Precision Inference

old English sheepdog (8a-6w)

DL meets HPC Sep 2021 37746

Applying Optimization

Precision-level

A Perturbation Theory View of Low-Precision Inference

K. Banerjee (Walmart Labs)

DL meets HPC

Sep 2021 37 /46

Applying Optimization Precision-level

A Perturbation Theory View of Low-Precision Inference

dalmatian (8a-8w)

DL meets HPC Sep 2021 37746

Applying Optimization

Precision-level

A Perturbation Theory View of Low-Precision Inference

dalmatian (8a-8w)

K. Banerjee (Walmart Labs)

DL meets HPC

Sep 2021 37 /46

Applying Optimization Precision-level

A Perturbation Theory View of Low-Precision Inference

@ Low precision (and sparsification): adding noise to weights/activations

Need to preserve the output of each layer such that no/little loss of accuracy

8-bit weight and 8-bit activations (8a-8w) shown to work well
o ~1% loss of accuracy from FP-32 on very deep CNNs (e.g. ResNet101)

Sub-8-bit weights and/or activations incur noticeable drop in accuracy

@ Our observation:
o Not all the weights may be well-represented by sub-8-bit precision
o Not all the weights may need 8-bit precision

@ Our approach: Keep low-precision weights in a neighborhood of FP32
weights using only 8-bit activations and Ternay weights

W (FP32)

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021 38/ 46

A2]
Ternary Residual Inference

Ternary Weights: oW ~ W, W, = sign(W;), if [W;| > T, and 0 otherwise
E(a, T)=||W —aW|2, o*, T* = argmin E(a, T),a > 0, W, € {~1,0,+1}

«a>0,T>0
X a;Wy
) Wg + S}
O‘3W3

Theoretical understanding of sensitivity of weights and/or activations to final
classification accuracy

@ Highly sensitive layers (e.g. first conv layer) require more precision

@ We want uniform low-precision operations rather than multi-precision
Ternary Residual Edge: add more ternary edges selectively s.t.

@ More ternary compute for certain parts of the augmented network

@ Significant recovery of loss with overall less compute cost than 8a-8w

% A Kundu, K Banerjee et al., “Ternary Residual Networks, SysML 2018
DU ee PG Sep 2021 39746

Applying Optimization Precision-level

Ternary Residual Inference (contd.)

1= Further fine-tuning via block-wise ternary residual

o Partition the weights in disjoint blocks (of N elements)
o Convert to ternary, and add r number of residual blocks (if necessary)

= N and r control the model size, accuracy, and ternary compute

== \We can adjust the accuracy-compute trade-off on-the-fly during inference
(unlike other models) by disabling least important residual blocks

1= Results of Ternary Residual conversion of ResNet-101 pre-trained on

ImageNet

e Total number of blocks (without residual) is 1x
e Overall ~ 2x savings in compute cost comparing to 8a-8w with similar

accuracy
Block Size ~ 1% ~ 2%
#Blocks [mult reduction | #Blocks [mult reduction
N =64 2.4x 26 % 2% 32x
N = 256 2.8x 90x 2.4% 105x

K. Banerjee (Walmart Labs)

DL meets HPC

Sep 2021 40/ 46

Other Works
Other Works

Function Approximation:
e o(x) = (1+ tanh(x/2))/2
e swish(x) = x.0(x) = x.(1 + tanh(x/2))/2
o GELU(x) = x.®(x) ~ 5(1 + tanh(\/2/m(x + a.x)))
% "“K-TanH: Efficient TanH for Deep Learning,” arXiv 2020
°

-
softmax(z); = Z,f —;
j=1

o Taylor series expansion till nt" order: e ~ f"(z) =37 o &

"(z)
Zj:l f7(z)

% K Banerjee et al., "Exploring Alternatives to Softmax Function,”

DeLTA 2021 (nominated for Best Poster Award)

Fault Tolerance:

@ Explore transient faults — single bit flip

@ Compare resilience of pruned and quantized deep learning models

% “Reliability Evaluation of Compressed Deep Learning Models,”

LASCAS 2020

e Taylor softmax(z); =

Open Problems Node-level

Node-level Open Problems

B =512, P=512

ma Batch Comm. |

3.0x
(13.9x) |
R R
PPy

120

Figure: Communication overtakes computation during scaling

@ Can we hide the communication time while doing computation?

@ Can we decrease the amount of gradient exchange by:
e compressing the gradients?
e using low-precision?
e sharing it intermittently?
@ How to adapt DL training for Federated learning (data stored in
local devices and not shared, e.g., in healthcare for data privacy)?

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021 42 /46

Iz 0]
Model-level Open Problems

o soft labels
predictions

distilled| knowledge

hard labels
< true label

il | predictions
Training data

Student

@ How can we design a smaller models to achieve similar accuracy using
knowledge distillation, low-precision and/or pruning?
@ How can we devise better heuristics to avoid combinatorial explosion
while:
o searching appropriate layers?
o applying low-precision?
o tuning hyper-parameters?
@ How to design models for TinyML (loaded into micro-controllers)?

DL meets HPC Sep 2021 43746

Compiler/Kernelleve
Compiler/Kernel-level Open Problems

ES

8E [cijp=0

ES Ci,) +=A(i, k) * B(K, j):

ol C.update().ilek, j, i, kk, j, i, KK, JJ, II);

isolate_producer_chain(A, A_loader, A_feeder)
isolate_producer_chain(B, B_loader, B_feeder)
isolate_consumer_chain(C, C_drainer, C_unloader);
A_loader.unroll(ii).remove(jj).vioad(kk);
A_feeder.buffer(i, Buffer::Double).unroll(ii;
B_loader.unroll(j).remove(ii).vioad(kKk);
B_feeder.buffer(k, Buffer::Double).unrollj);
C.update().unroll(j, ii
forward(A_feeder, {1, 0)) forward(B_feeder, {0, 1));
C_drainer.unroll(j, ii).gather(C, {1, 0})
C_unloader.buffer(ii).unroll(ii).vstore(j);

Spatial
Mapping

Temporal to Spatial — T2S
Figure: T2S, AutoSA, HeteroCL — libraries built primarily on top of Halide to
automatically generate code for spatial architectures
@ Meta-compiler: How can we automate the process of updating these
libraries/compilers for new generations of hardware?
@ How can we adapt compiler optimizations for low power (ideally,
without sacrificing performance) to support Green Al?
@ How can we formally/semi-formally verify these compilers?
% K Banerjee et al., "A Quick Introduction to Functional Verification of
Array-Intensive Programs,” 2019
DL meets HPC Sep 2021 4446

Open Problems Precision-level

Precision-level Open Problems

Sign Range Precision
N\ N\
Y
TF32 Range

TENSOR FLOAT 32 (TF32) _

TF32 Precision

FP16

@ Can we develop a theoretical framework to argue about the various
datatypes?

@ We say that regularization induced by low precision sometimes lead to
better accuracy — however, do we really understand it?

@ Can we have hierarchical accumulators for low precision, e.g., FP8 —
FP16 — FP327

DL meets HPC Sep 2021 45746

Thank you

“Big data isn’'t about bits, it's about talent.”
— Douglas Merrill, CEQO, Zest Al

L%/ W‘/

1= https://kunalbanerjee.github.io/
3 kunal.banerjeel@walmart.com

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021 46 / 46

https://kunalbanerjee.github.io/
kunal.banerjee1@walmart.com

	Background
	Deep Learning & HPC

	Applying Optimization
	Node-level
	Model-level
	Compiler/Kernel-level
	Precision-level
	Other Works

	Open Problems
	Node-level
	Model-level
	Compiler/Kernel-level
	Precision-level

	Thank you

