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Background Deep Learning & HPC

Deep Learning & HPC

Deep Learning is now ubiquitous:
self-driving cars, voice-activated assistants, automatic machine translation,
image recognition, cancer detection, market price forecasting, etc.

Table: Training time and top-1 validation accuracy with ImageNet/ResNet-50

Batch Size Processor DL Library Time Accuracy
He et al. 256 Tesla P100×8 Caffe 29 hours 75.30%

Goyal et al. 8K Tesla P100×256 Caffe 21 hours 76.30%
Smith et al. 16K full TPU Pod TensorFlow 30 mins 76.10%
Akiba et al. 32K Tesla P100×1024 Chainer 15 mins 74.90%

Jia et al. 64K Tesla P40×2048 TensorFlow 6.6 mins 75.80%
Mikami et al. 68K Tesla V100×2176 NNL 224 secs 75.03%

Source: news.developer.nvidia.com/sony-breaks-resnet-50-training-record-with-nvidia-v100-tensor-core-gpus/

“Finally, after decades of research, deep learning, the abundance of data, the
powerful computation of GPUs came together in a big bang of modern AI.”

– Jensen Huang, CEO of Nvidia
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Background Deep Learning & HPC

Growing Size of Deep Learning Models
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Background Deep Learning & HPC

Growing Compute of Deep Learning Models
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Background Deep Learning & HPC

Only 5% ML Code Exists in an ML System

Source: Scullery et al., Hidden Technical Debt in Machine Learning Systems, NeurIPS 2015
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Background Deep Learning & HPC

(Top-Down) Levels of Applying Optimization

Node-level: Scaling to multiple nodes – scope: > 100×
Model-level: Explore alternate models and/or model compression
E.g.: Use EfficientNet-B0 instead of Resnet-50 – scope: ∼ 10×
Compiler/Kernel-level: Execute alternate optimized kernels
E.g.: FFT/Winograd based convolution – scope: ∼ 3− 4×
Precision-level: Apply precision levels below FP32
Nvidia Volta – peak FLOPS: 15 TF vs peak OPS (in FP16): 120 TF
– scope: 8×
Nvidia Ampere – peak FLOPS: 19.5 TF vs peak OPS (in FP16,
BFLOAT16): 312 TF (624 TF with sparsity) – scope: 32×

+ We explored all levels for optimization; however, model-level was
explored comparatively less
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Applying Optimization Node-level

Scaling

+ Vertical Scaling = Scaling Up, and Horizontal Scaling = Scaling out

+ Henceforth, we are going to talk about horizontal scaling only
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Applying Optimization Node-level

Scaling (contd.)

Amdahl’s Law

speedup =
1

1− p + p
N

where, p is the parallelizable portion, and N is the number of nodes

Example: If 80% of the process is parallizable (i.e., p = 0.8) and we have 4
nodes, then

speedup =
1

1− 0.8 + 0.8
4

=
1

0.2 + 0.2
=

1

0.4
= 2.5

In words, the speedup will be 2.5 times compared to a single node execution.

+ Strong Scaling: How the solution time varies with the number of
processors for a fixed total problem size.

+ Weak Scaling: How the solution time varies with the number of
processors for a fixed problem size per processor.
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Applying Optimization Node-level

Scaling GNMT on an Intel CPU Cluster

Translating English to Spanish

Neural Machine Translation (NMT) is an approach to machine
translation that uses an artificial neural networks

Google’s NMT (GNMT) is an LSTM based machine translation model

Major steps taken to expedite training of GNMT workload:
1 LSTM optimizations on x86 architecture (will cover in kernel-level)
2 Load balancing dataset
3 Distributed training with Horovod-MLSL
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Applying Optimization Node-level

Load Balancing Dataset

Training Dataset – Load Imbalance Problem

List of sentences After naive batching (BS=3) After padding

Lots of wasted compute due to padding to max sentence length within
current batch
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Applying Optimization Node-level

Load Balancing Dataset

Training Dataset – Bucketing

List of sentences After sorting After batching After shuffling

Grouping similar length sentences together in a batch reduces wasted
compute due to padding

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021 11 / 46



Applying Optimization Node-level

Load Balancing Dataset

Multi-node Training Dataset

Divided list of
sentences across
nodes

After sorting on
each node

After batching &
shuffling

View of global
minibatch

Synchronization at gradient reduction causes wasted cycles due to
different sequence length on different nodes
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Applying Optimization Node-level

Load Balancing Dataset

Load Balanced Multi-node Training Dataset

Each node processes full list of sentences and picks global minibatch from
a given bucket – then selects its own portion from global batch
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Applying Optimization Node-level

Horovod-MLSL

Horovod

Originally designed by Uber for distribiuted deep learning using
TensorFlow

Provides concise API to modify TensorFlow model and make it run on
multi-node clusters

By default uses MPI as communication backend

Additional communication optimizations, e.g., fusing several
communication calls

Intel® Machine Learning Scaling Library (MLSL)

We changed the MPI backend for Horovod with MLSL backend

Trade off compute for performance by dedicating several cores to
communication

Advantageous for communication-bound models

Currently, replaced by Intel® oneAPI Collective Communications
Library (oneCCL)
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Applying Optimization Node-level

Summary of Performance Optimizations

F D Kalamkar, K Banerjee et al., “Training Google Neural Machine
Translation on an Intel CPU Cluster,” CLUSTER 2019
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Applying Optimization Node-level

Weal Scaling up to 16 nodes

+ 78% weak scaling efficiency from 1 node → 16 nodes

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021 14 / 46



Applying Optimization Node-level

Strong Scaling up to 16 nodes

+ 81% strong scaling efficiency from 1 node → 16 nodes
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Applying Optimization Model-level

Convolution Neural Networks
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Applying Optimization Model-level

Squeezing Convolution Neural Networks

+ Iandola et al., “SqueezeNet: AlexNet-level Accuracy with 50x Fewer
Parameters and <0.5MB Model Size”, 2016

+ Researchers use model compression and/or variants of convolution
layer (e.g., depthwise separable convolution in MobileNet)
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Applying Optimization Model-level

AutoML (Neural Architecture Search, AutoAI)

Goals of AutoML

1 Preprocess and clean the data

2 Select an appropriate model family

3 Optimize model hyperparameters

4 Design the topology of neural networks (if deep learning is used)

5 Analyze the results obtained

Source: https://softwareengineeringdaily.com/2019/05/15/introduction-to-automated-machine-learning-automl/
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Applying Optimization Compiler/Kernel-level

Compilers for Deep Learning

“The next war is compilers for the frameworks.”

– Soumith Chintala, Distinguished Engineer, Facebook AI

Google: Tensorflow XLA & MLIR (absorbed by LLVM), Amazon: NNVM

Facebook: Glow, Intel: nGraph (now moved to OpenVino), Apache TVM
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Applying Optimization Compiler/Kernel-level

Bounds on Performance in HPC

Compute-bound: Kernel spends most of its time in calculations,
e.g., matrix multiplication – compute: O(n3), memory: O(n2)

Bandwidth-bound: Kernel spends most of its time in fetching the
data, e.g., matrix addition – compute: O(n2), memory: O(n2)

Latency-bound: Kernel spends most of its time in memory fetches
without saturating the global memory bus, e.g., accessing A[B[i]]

+ Bandwidth-bound and latency-bound together constitute
memory-bound kernels

+ (Normal) Convolution is compute-bound except 1× 1 convolutions,
which being element-wise multiplications are memory-bound

+ Personally, never worked with latency-bound kernels although these
sometimes occur in HPC, e.g., FM-index based sequence search in
computational-biology

+ There are other types of bounds as well, e.g., I/O-bound
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Applying Optimization Compiler/Kernel-level

Convolution (direct)

Naive convolution loop structure

S1: for n = 0 ... N-1 do //no. of images (minibatch)

S2: for k = 0 ... K-1 do //output feature maps

S3: for c = 0 ... C-1 do //input feature maps

S4: for oj = 0 ... P-1 do //output height

S5: for oi = 0 ... Q-1 do //output weight

S6: ij = stride * oj

S7: ii = stride * oi

S8: for r = 0 ... R-1 do //weight height

S9: for s = 0 ... S-1 do //weight width

S10: O[n][k][oj][oi] += I[n][c][ij+r][ii+s] * W[k][c][r][s]

Output feature maps computed independently (data parallel fashion)
Block C and K loops by a factor of VLEN
Vectorize fused multiply-add (FMA) in line S10

Register blocking in loops P and Q
Improve data reuse from registers
Decrease L1 traffic
Hide the latency of the FMA instructions
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Applying Optimization Compiler/Kernel-level

Convolution (direct) – after optimization

Convolution with vectorization and register blocking
S1: Cb = C / VLEN

S2: Kb = K / VLEN

S3: Pb = P / RBP
S4: Qb = Q / RBQ
S5: for n = 0 ... N-1 do

S6: for kb = 0 ... Kb-1 do

S7: for cb = 0 ... Cb-1 do

S8: for ojb = 0 ... Pb-1 do

S9: for oib = 0 ... Qb-1 do

S10: ij = stride * ojb * RBP
S11: ii = stride * oib * RBQ
S12: oj = ojb * RBP
S13: oi = oib * RBQ

S14: for r = 0 ... R-1 do

S15: for s = 0 ... S-1 do

S16: for k = 0 ... VLEN do

S17: for c = 0 ... VLEN do

S18: for p = 0 ... RBP do

S19: for q = 0 ... RBQ do

S20: ij′ = ij + stride * p

S21: ii′ = ii + stride * q

S22: O[n][kb][oj+p][oi+q][k] += I[n][cb][ij
′+r][ii′+s][c] * W[kb][cb][r][s][c][k]

Tensor Layouts:

I[N][Cb][H][W][VLEN], O[N][Kb][P][Q][VLEN], W[Kb][Cb][R][S][VLEN][VLEN]
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Applying Optimization Compiler/Kernel-level

Convolution (direct) – after further optimization

Convolution with microkernel and layer fusion
S1: for n = 0 ... N-1 do

S2: for kb = 0 ... Kb-1 do

S3: for cb = 0 ... Cb-1 do

S4: for ojb = 0 ... Pb-1 do

S5: for oib = 0 ... Qb-1 do

S6: ij = stride * ojb * RBP
S7: ii = stride * oib * RBQ
S8: oj = ojb * RBP
S9: oi = oib * RBQ
S10: CONV(&I[n][cb][ij][ii][0], &W[kb][cb][0][0][0][0], &O[n][kb][oj][oi][0])

S11: if fuse(L()) AND cb == Cb-1 then

S12: APPLY (L(), &O[n][kb][oj][oi][0]))

RBP , RBQ depend on convolution, VLEN depends on architechture =⇒ JITed microkernel

Software Prefetching (to hide latency)

L1 cache prefetches — by same microkernel

L2 cache prefetches — by different microkernel

Change loop ordering to maximize data reuse

Eg. For R=1, S=1 convolutions, pull in Cb loop =⇒ Increase output tensor reuse

by a factor of Cb

Parallelization strategy – N×Kb×Pb×Qb independent microkernel invocations
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Applying Optimization Compiler/Kernel-level

Convolution (direct) – Results

Figure: Forward Propagation on Skylake

Figure: ResNet-50 training performance results

F “Anatomy Of High-Performance Deep Learning Convolutions On SIMD
Architectures,” SC 2018

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021 24 / 46



Applying Optimization Compiler/Kernel-level

Convolution using Winograd

Winograd – a special case of Convolution having filter size 3×3

Complexity of multiplication: N.(H/m).(W/n).C.K.(m+R-1).(n+S-1), N -
minibatch, (H, W) - (height, width) of feature map, (m, n) - (height, width)
of tile, C - #input channels, K - #output channels, R = S = 3 (filter size)

F “Understanding the Performance of Small Convolution Operations for CNN
on Intel Architecture.,” SC Poster 2017
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Applying Optimization Compiler/Kernel-level

Recurrent Neural Network (RNN)

ht = Λ(W ∗ xt + R ∗ ht−1 + b)

W

xt

R

ht−1 b

∗

∗

+ + Λ ht

Λ ∈ {σ, tanh, ReLU}, i.e., a non-linear activation function
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Applying Optimization Compiler/Kernel-level

Long Short-Term Memory (LSTM)

it = σ(Wi ∗ xt + Ri ∗ ht−1 + bi )
ct = tanh(Wc ∗ xt + Rc ∗ ht−1 + bc)
ft = σ(Wf ∗ xt + Rf ∗ ht−1 + bf )
ot = σ(Wo ∗ xt + Ro ∗ ht−1 + bo)

st = ft ◦ st−1 + it ◦ ct
ht = ot ◦ tanh(st)

Ri

Rc

Rf

Ro

Wo Wf Wc Wi

bi

bc

bf

bo+

+

+

+ σ

tanh

σ

σ

mul

+

mulst−1

tanh

mul ht

st

ht−1

xt
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Applying Optimization Compiler/Kernel-level
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Applying Optimization Compiler/Kernel-level

Implementation of RNN, LSTM, GRU

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)
are special cases of RNN – same methodology applies in general

Main computation consists of GEMMs W{i ,f ,o,c} ∗ xt and
R{i ,f ,o,c} ∗ ht−1

Element-wise operations are applied to the GEMM results

Analogous equations for back-propagation kernels

Perform two large GEMMs (W ∗ x and R ∗ h) or one larger GEMM
(WR ∗ xh), then perform element-wise operations

X Easy to implement – rely on vendor-optimized GEMM
7 Element-wise operations exposed as bandwidth-bound kernel (vs

in-cache reuse of GEMM outputs)
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Applying Optimization Compiler/Kernel-level

Batch-Reduce GEMM

+ The single batch-reduce GEMM kernel can act as the innermost
kernel for a variety of deep learning topologies (CNN, RNN, LSTM,
GRU, MLP) delivering SOTA performance

+ Boosts programmer productivity which otherwise is spent tuning
various kernels across different topologies

+ All code available in https://github.com/hfp/libxsmm

F E Georganas, K Banerjee et al., “Harnessing Deep Learning via a
Single Building Block,” IPDPS 2020
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Applying Optimization Compiler/Kernel-level

Comaprison with Intel® MKL-DNN

+ Intel® MKL-DNN is an open source performance library from Intel
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Forward pass results Backward/weight update pass results

Machine: Single socket Xeon Platinum 8180 with 28 Cores

For small/medium sized problems, forward pass is up to 1.4× faster,
while for backward/weight update it is up to 1.3× faster

For large weight matrices the two approaches have similar
performance because GEMM has cubic scaling whereas element-wise
has quadratic scaling
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Applying Optimization Compiler/Kernel-level
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F K Banerjee et al., “Optimizing Deep Learning LSTM Topologies
onIntel Xeon Architecture,” ISC 2019 (Best Research Poster – AI &
ML track)

F K Banerjee et al., “Optimizing Deep Learning RNN Topologies on
Intel Architecture,” JSFI 2019 (invited paper)
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Applying Optimization Compiler/Kernel-level

Using Off-the-shelf Library: DeepSpeed

Figure: Performance of DeepSpeed’s data parallelism and low-precision

+ One need not be an expert – just pick off-the-shelf components

F “From Pixels To Words: A Scalable Journey Of Text Information
From Product Images To Retail Catalog,” CIKM 2021
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Applying Optimization Precision-level

Low-Precision Datatype & bfloat16

Low-Precision: Any datatype below FP32

FP32

FP16

BF16

s 8 bit exp 23 bit mantissa

s 5 bit 10 bit

s 8 bit 7 bit

BF16 has several advantages over FP16:

It can be seen as a short version of FP32, skipping the least significant 16 bits of
mantissa

There is no need to support denormals; FP32, and therefore also BF16, offer more
than enough range for deep learning training tasks

Hardware exception handling is not needed

Source: https://software.intel.com/sites/default/files/managed/40/8b/bf16-hardware-numerics-definition-white-paper.pdf

Intel’s 3rd Gen Intel® Xeon® Scalable processor (codenamed Cooper Lake) launched in

2020 includes bfloat16

Source: https://www.intel.in/content/www/in/en/products/docs/processors/xeon/3rd-gen-xeon-scalable-processors-brief.html
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Applying Optimization Precision-level

Deep Learning Training with bfloat16

Figure: Imagenet-1K training, top-1 and top-5 validation accuracy plots for CNNs
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Applying Optimization Precision-level

Deep Learning Training with bfloat16

Figure: RNN training using bfloat16 data type

F “A Study of BFLOAT16 for Deep Learning Training,” 2019
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Applying Optimization Precision-level

Dynamic Fixed Point–16

+ Integer based ALUs require less area and less power compared to foating point

based ALUs

DFP16

s 15 bit mantissa

s 15 bit mantissa

s 15 bit mantissa

s 15 bit mantissa

s 7 bit

Efmax = E(max
∀f∈F
|f |),F is a floating point tensor

Es = Efmax − (P − 2),P is the # of bits used
∀in ∈ I , fn = in × 2Es , where fn ∈ F
Multiplication: iab = ia × ib and exponent E ab

s = E a
s + E b

s

Addition:

ia+b =

{
ia + (ib >> (E a

s − E b
s )), if E a

s > E b
s

ib + (ia >> (E b
s − E a

s )), if E b
s > E a

s

and exponent E a+b
s = max

Ea
s ,E

b
s
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Applying Optimization Precision-level

CNN Training with DFP-16

Table: Training configuration and ImageNet-1K classification accuracy

Model Batch-size/Epochs Baseline DFP-16
Top-1 Top-5 Top-1 Top-5

ResNet-50 1024/90 75.70% 92.78% 75.77% 92.84%
GoogLeNet-v1 1024/80 69.26% 89.31% 69.34% 89.31%
VGG-16 256/60 68.23% 88.47% 68.12% 88.18%
AlexNet 1024/88 57.43% 80.65% 56.94% 80.06%

+ No change in hyper-parameters, and trained in as many iterations as FP32
baseline

+ Batch norm layer is in FP32

+ Speed up of 1.8× over FP32 baseline for Resnet-50 on Intel®

XeonPhi™ Knights-Mill

F “Mixed Precision Training of Convolutional Neural Networks using Integer
Operations,” ICLR 2018
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Applying Optimization Precision-level

A Perturbation Theory View of Low-Precision Inference
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Applying Optimization Precision-level

A Perturbation Theory View of Low-Precision Inference

Low precision (and sparsification): adding noise to weights/activations

Need to preserve the output of each layer such that no/little loss of accuracy

8-bit weight and 8-bit activations (8a-8w) shown to work well

∼1% loss of accuracy from FP-32 on very deep CNNs (e.g. ResNet101)

Sub-8-bit weights and/or activations incur noticeable drop in accuracy

Our observation:

Not all the weights may be well-represented by sub-8-bit precision
Not all the weights may need 8-bit precision

Our approach: Keep low-precision weights in a neighborhood of FP32
weights using only 8-bit activations and Ternay weights
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Applying Optimization Precision-level

Ternary Residual Inference

Ternary Weights: αŴ 'W , Ŵi = sign(Wi ), if |Wi | > T , and 0 otherwise

E (α,T ) = ‖W − αŴ ‖2
F , α

∗,T ∗ = argmin
α≥0,T≥0

E (α,T ), α ≥ 0, Ŵi ∈ {−1, 0,+1}

α1Ŵ1

α2Ŵ2

α3Ŵ3

+

x

ŷ

Theoretical understanding of sensitivity of weights and/or activations to final
classification accuracy

Highly sensitive layers (e.g. first conv layer) require more precision

We want uniform low-precision operations rather than multi-precision

Ternary Residual Edge: add more ternary edges selectively s.t.

More ternary compute for certain parts of the augmented network

Significant recovery of loss with overall less compute cost than 8a-8w

F A Kundu, K Banerjee et al., “Ternary Residual Networks,” SysML 2018
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Applying Optimization Precision-level

Ternary Residual Inference (contd.)

+ Further fine-tuning via block-wise ternary residual

Partition the weights in disjoint blocks (of N elements)
Convert to ternary, and add r number of residual blocks (if necessary)

+ N and r control the model size, accuracy, and ternary compute

+ We can adjust the accuracy-compute trade-off on-the-fly during inference
(unlike other models) by disabling least important residual blocks

+ Results of Ternary Residual conversion of ResNet-101 pre-trained on
ImageNet

Total number of blocks (without residual) is 1×
Overall ∼ 2× savings in compute cost comparing to 8a-8w with similar
accuracy

Block Size ∼ 1% ∼ 2%
#Blocks mult reduction #Blocks mult reduction

N = 64 2.4× 26× 2× 32×
N = 256 2.8× 90× 2.4× 105×
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Applying Optimization Other Works

Other Works

Function Approximation:

σ(x) = (1 + tanh(x/2))/2
swish(x) = x .σ(x) = x .(1 + tanh(x/2))/2
GELU(x) = x .Φ(x) ≈ x

2 (1 + tanh(
√

2/π(x + a.x3)))
F “K-TanH: Efficient TanH for Deep Learning,” arXiv 2020

softmax(z)i = ezi∑K
j=1 e

zj

Taylor series expansion till nth order: ez ≈ f n(z) =
∑n

i=0
z i

i!

Taylor softmax(z)i = f n(zi )∑K
j=1 f

n(zj )

F K Banerjee et al., “Exploring Alternatives to Softmax Function,”
DeLTA 2021 (nominated for Best Poster Award)

Fault Tolerance:

Explore transient faults – single bit flip
Compare resilience of pruned and quantized deep learning models

F “Reliability Evaluation of Compressed Deep Learning Models,”
LASCAS 2020
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Open Problems Node-level

Node-level Open Problems

Figure: Communication overtakes computation during scaling

Can we hide the communication time while doing computation?

Can we decrease the amount of gradient exchange by:

compressing the gradients?
using low-precision?
sharing it intermittently?

How to adapt DL training for Federated learning (data stored in
local devices and not shared, e.g., in healthcare for data privacy)?
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Open Problems Model-level

Model-level Open Problems

How can we design a smaller models to achieve similar accuracy using
knowledge distillation, low-precision and/or pruning?
How can we devise better heuristics to avoid combinatorial explosion
while:

searching appropriate layers?
applying low-precision?
tuning hyper-parameters?

How to design models for TinyML (loaded into micro-controllers)?
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Open Problems Compiler/Kernel-level

Compiler/Kernel-level Open Problems

Figure: T2S, AutoSA, HeteroCL – libraries built primarily on top of Halide to
automatically generate code for spatial architectures

Meta-compiler: How can we automate the process of updating these
libraries/compilers for new generations of hardware?

How can we adapt compiler optimizations for low power (ideally,
without sacrificing performance) to support Green AI?
How can we formally/semi-formally verify these compilers?

F K Banerjee et al., “A Quick Introduction to Functional Verification of
Array-Intensive Programs,” 2019
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Open Problems Precision-level

Precision-level Open Problems

Can we develop a theoretical framework to argue about the various
datatypes?

We say that regularization induced by low precision sometimes lead to
better accuracy – however, do we really understand it?

Can we have hierarchical accumulators for low precision, e.g., FP8 →
FP16 → FP32?
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Thank you

“Big data isn’t about bits, it’s about talent.”
– Douglas Merrill, CEO, Zest AI

Thank you!
+ https://kunalbanerjee.github.io/

B kunal.banerjee1@walmart.com

K. Banerjee (Walmart Labs) DL meets HPC Sep 2021 46 / 46

https://kunalbanerjee.github.io/
kunal.banerjee1@walmart.com

	Background
	Deep Learning & HPC

	Applying Optimization
	Node-level
	Model-level
	Compiler/Kernel-level
	Precision-level
	Other Works

	Open Problems
	Node-level
	Model-level
	Compiler/Kernel-level
	Precision-level

	Thank you

