Translation Validation of Embedded System
Specifications using Equivalence Checking

Kunal Banerjee
Supervisors: Prof. C Mandal, Prof. D Sarkar

Dept of Computer Sc & Engg
[IT Kharagpur

Oct30,2014 1/32

e —
Outline

© Background

© A formal model and related verification method
e The method of symbolic value propagation

@ Array Data Dependence Graphs (ADDGs)

© Future Work

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 2/32

Outline

© Background

@

Oct 30,2014 3,32

Background

Program: An organized list of instructions that, when executed, causes
the computer to behave in a predetermined manner.

(source: Venit et al., Prelude to Programming: Concepts and Design)

@

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 3/32

Background

Program: An organized list of instructions that, when executed, causes
the computer to behave in a predetermined manner.
(source: Venit et al., Prelude to Programming: Concepts and Design)

We are not always happy with the programs we write.

Objectives of program optimization:
@ To speed-up the computation

@ To use less resource, eg. memory, power, etc.

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 3/32

Background

Program: An organized list of instructions that, when executed, causes
the computer to behave in a predetermined manner.
(source: Venit et al., Prelude to Programming: Concepts and Design)

We are not always happy with the programs we write.

Objectives of program optimization:
@ To speed-up the computation

@ To use less resource, eg. memory, power, etc.

So, we need a compiler.

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 3/32

Can you trust your compiler?

Erroneous loop reversal

sum = 0; sum = 0;

for (i=0; i<N; i++) { for (i=N; i>=0; i--) {
sum = sum + al[i]; sum = sum + al[i];

} } /* a[N] gets accessed */

Oct 30,2014 432

Can you trust your compiler?

Erroneous loop reversal

sum = 0; sum = 0;

for (i=0; i<N; i++) { for (i=N; i>=0; i--) {
sum = sum + al[i]; sum = sum + al[i];

} } /* a[N] gets accessed */

Program: An organized list of instructions that, when executed, causes
the computer to behave in a | predetermined manner‘.

A faulty compiler can alter the meaning of a program.

@

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 4 /32

What is the remedy?

@ Verified Compiler — All optimized programs will be correct by
construction.
Example: CompCert, INRIA

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014

5/ 32

What is the remedy?

@ Verified Compiler — All optimized programs will be correct by
construction.
Example: CompCert, INRIA
Limitations:

o Very hard to formally verify all passes of a compiler.
o Undecidability of the general problem of program verification restricts
the scope of the input language supported by the verified compiler.

@

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 5/32

What is the remedy?

@ Verified Compiler — All optimized programs will be correct by
construction.
Example: CompCert, INRIA
Limitations:
o Very hard to formally verify all passes of a compiler.
o Undecidability of the general problem of program verification restricts
the scope of the input language supported by the verified compiler.

@ Translation Validation — Each individual translation is followed by a
validation phase which verifies that the target code produced correctly
implements the source code.

(This is what we do, i.e., equivalence checking of programs.)

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 5/32

How to check equivalence of programs?

The general problem is undecidable.

McCarthy 91 function

int M (int n) { int M (int n) {
if (n > 100) if (n > 100)
return (n - 10); return (n - 10);
else else
return M(M (n + 11)); return 91;
} }

Comparing two programs in totality is impossible — we should break them
into smaller chunks.

@

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 6 /32

Granularity of the chunks

Instruction level

x = a + b;
y =X - a;
z =y + b;

<
T
o
ze
g

Kunal Banerjee (IIT Kharagpur)

TCS Seminar

Oct 30, 2014

7/32

Granularity of the chunks

Instruction level

x=a+b; v/
y =X - a;
z =y + b;

Xx=a+b; v/

N
|

=2 % b;

Kunal Banerjee (IIT Kharagpur)

TCS Seminar

Oct 30, 2014

7/32

Granularity of the chunks

Instruction level

x=a+b; v/ x=a+b; /
y =x - a; X y = b; X
z =y + b; Z = 2 % b;

So, instruction level checking can be misleading — let’s try at basic block
level.

Oct 30,2014 7,32

Granularity of the chunks (contd.)

Basic Block level
X = a + b;
y =X - a;
z =y + b;

v =V + x;
W=y ok zZ;
} while(c1);

N < N
o
oo
* ¥
g ¥

V=V o+ ox;
} while(c1);
W=y *x Z;

Kunal Banerjee (IIT Kharagpur)

TCS Seminar

Oct 30, 2014

8/32

Granularity of the chunks (contd.)

Basic Block level

x=a+b; / Xx=a+b; v
y=x-a; v y = b; v
z=y+b; v Z = 2wy
do { do {

vV =V + X; vV =V + X;
W=y ok zZ; } while(c1);
} while(c1); w=y*z

0ct 30,2014 832

Granularity of the chunks (contd.)

Basic Block level

X =a+b; /
y=x-a; v
z =y +b; V

v=v+x; X
W=y *z; X
} while(c1);

x=a+b; /

y = b; v
zZ =2 % Db; V
do {

v =v+x; X
} while(c1);
W=y ok oz;

So, checking individual basic blocks is not enough.

Kunal Banerjee (IIT Kharagpur)

Oct 30, 2014

8 /32

Program as a combination of paths

Break a program into smaller chunks — cut loops.

Representing a program using CDFG

q1,1

y = 10; Y <20y «y+1 —/y<10,z<1
z := 1;
while (y < 20) { q1,3 q1,2

y =y + 1;

z =y X z; —/z<yXz —/x <=z
} q1,4
X 1= Z;

All computations of the program can be viewed as a concatenation of
paths.

Example: p1.p3, p1.p2.p3, p1-p2.P2-p3, p1.(p2)*.p3 i
TCS Seminar Oct 30,2014 9 /32

A formal model and related verification method
Outline

© A formal model and related verification method

@

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 10 / 32

Finite State Machine with Datapath (FSMD)

FSMDs effectively capture both the control flow and the associated data
processing of a behaviour.

The FSMD model is a seven tuple F = (Q, qo, !, V, O, f, h):
Finite set of control states

Reset state, i.e. qo € Q

Set of input variables

Set of storage variables

Set of output variables

State transition function, i.e. Q x 2° — Q

>0 <8 0

Update function of the output and the storage variables, i.e.
Qx2°5 U
@ U represents a set of storage or output assignments
@ S is a set of arithmetic relations between arithmetic @
expressions

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 10 / 32

Equivalence checking of FSMDs: A basic example

—/a<=b+c

qo,1
—/d<=a—e
q0,2
x<y/ Ix<y/
x<=x+y x<=x—d
—/t<=x+f

qo,4
—/- —/m<<t—d

90,5
—/h<=r+m

40,6

(a)Mo

Kunal Banerjee (IIT Kharagpur)

Any computation in an FSMD can be represented
by a concatenation of its computation paths

A path is an alternating sequence of states and
transitions, starting and ending at cutpoints

Identification of suitable cutpoints and the path
segments between them leads to a finite path cover
Po in Mo

For an FSMD, the reset state and all states with
multiple incoming/outgoing transitions can be
considered as the cutpoints

Length and number of computations of an FSMD
can both be infinite

Since any computation corresponds to a
concatenation of paths, it is enough to establish

path equivalences @

TCS Seminar Oct 30, 2014 11 /32

A formal model and related verification method

Equivalence checking of FSMDs: A basic example

—/a<b+c

q0,1
—/d<a—e

q0,2
x<y/ Ix<y/

x<=x+y x<=x—d
—/t<=x+f

90,4
—/- —/m<<t—d

90,5
—/h<=r+m

q0.6

(a)l\/lo

Kunal Banerjee (IIT Kharagpur)

x<y/

—/a<=b+c

qi,1

X<=Xx+Yy, q1,2
d<a—e

/

of —/x<=x—d
91,3
—/t<=x+f,
n<r—d
q1,4

—/h<=t+n
q15

(b)My

TCS Seminar

Ix<y/d<=a—e

Two FSMDs My and M;
are equivalent if for every
path in Py there is an
equivalent path in P;
and vice versa

Code transformations
can make this job
difficult

Paths may be extended,
and the path covers are
updated accordingly

< <
{00 == qo3 ~ 0 —>

Ix<y
d1,3, 90,0 — 40,3 =
Ix<y

q1,0 = q1,3, 90,3 —

§o,0 ™~ q1,3 = q1,0} @

Oct 30, 2014 12 / 32

A major challenge: Code motions across loops

—/t<=a+b —/t<a+b
—/t<=a+b
—/t<=a+b —/t<a+b
—/y<=a+b —/y <t —/y <=t —/y <=t
Orig BCM LCM SCM

@

Oct30,2014 13/ 32

A major challenge: Code motions across loops

—/t<a+b —/t<a+b
—/t<=a+b
—/t<a+b —/t<a+b
—/y<=a+b —/y<t —Jy <t —/y <t
Orig BCM LCM SCM
A path, by definition, cannot be extended beyond a loop. @

Oct30,2014 13/ 32

The method of symbolic value propagation
-
Outline

e The method of symbolic value propagation

@

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 14 / 32

The method of symbolic value propagation

< LV, > qo0,s qi,s < LV, >
—/v <= f(x) —/v<gl(y)
(..., f(x),...) P e g(y),)
(a)/\/lo (b)M1
An example of value propagation @

Oct30,2014 14/ 32

The method of value propagation

0] (s Viyoey Vo) Fal (oo Viyeooy Vjyeos)
—/vi <= f(vn, v)) —/vi <= g(Vm)
3 (a6 Qo (qb
—/vj < h(vi, vi) —/vj <= h(vk, v)
Q) (oo F (Vs)y V) e (o g(Vm)y ey vy.)
(a)Mo (b)Mq

An example of value propagation with dependency between propagated values

@

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 15 / 32

The method of value propagation

0,21 (oo Viyeny Vyen) al (oo Vieooy Vyen)
—/vi <= f(vn, v)) —/vi <= g(Vm)
3 (a6 Qo (qb
—/vj < h(vi, vi) —/vj <= h(vk, v)
G.c) (o F (Vo)y oy Vi) el (. g(Vm)y .oyl

B a/vi<=vi+g(vm) o " a/vi<s i+ f(va,v)

Q0. (-, 8(vm) + F(vn, v), a.z (-, 8(vim) + f(va, vj),
ce Vi) Cey Vi)
(a)Mo (b)Ml
An erroneous decision taken @

Oct30,2014 15/ 32

The method of value propagation

Q.0 (Vi V) Gra) (o Vi V)
—/vi < f(va, v}) —/vi <= g(vm)

B (a0 alans
—/vj <= h(vi, vi) —/vj <= h(vi, v1)

qoc; (..., f(Vn, V), .oy h(vi,vi), o) (90 (oo g(Vim), ooy h(vi, i), ..)

B a/vi<=vi+g(vm) o " a/vi<s i+ f(va,v)

- (..., 8(Vm) + f(vn, vj), s (-, &(Vm) + F(Va, h(vic, 1)),
' ...,h(vk,v/),...> ' ...,h(vk,v/),...>
(a)Mo (b)Ml
Correct decision taken @

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 15 / 32

The method of symbolic value propagation

Equivalence checking of FSMDs using value
propagation

<T7 <X7Y7i7 N7 tlat27h>> <T7 <X7y7 i7 Nv t17t27h>>

—/i<=1 —/i<=1l,h<=t+ to,
y=ti—t
q0,b 91,6
i<N/ Lo < N/ i<N/ i< N/
Xxesthtbh+xsi, eyt X< h+xxi,
i<=i+1 i<i+1
q0,c q1,c
(a)Mo (b) My
At the reset states &

Oct30,2014 16/ 32

The method of symbolic value propagation

Equivalence checking of FSMDs using value
propagation

q0,a q1,a
—/i<=1 —/i<=1,h<=t+ to,
y<=t—b
@ <T7<X7.y7i7N7t13t2)h>> @ <T5<X7t17t27i7N7t13t2a
. . ti + t2))
i< N/ i< N/ i <N/ L mi< N/—
Xxesthtbh+xsi, eyt X< h+xxi,
i<=i+1 i<i+1
q0,c q1,c
(a)Mo (b) My
At the beginning of the loops &

Oct30,2014 16/ 32

The method of symbolic value propagation

Equivalence checking of FSMDs using value
propagation

q0,a q1,a
—/i<=1 —/i<=1,h<=t+ to,
y<=t—b
q0,0) (T,(x,y,i,N,t1,ts, h)) ai,b) (T, (x,t1 — to, i, N, t1, to,
. . ti + t2))
i< N/ i< N/ i <N/ L mi< N/—
Xctht+bh+txsi, yey—t X <<= h+xxi,
i<=i+1 i<i+1
qo,c ai,c
(a)Mo (b) My
At the end of the loops &

Oct30,2014 16/ 32

The method of symbolic value propagation

Equivalence checking of FSMDs using value
propagation

q0,a q1,a
—/i<=1 —/i<=1,h<=t+ to,
y<=ti—t
q0,b 91,6
i <N/ \ i <N/ i<N/ N\ i< N/—
xest+bh+txxi,\y=t—t X <<= h+xxi,
i<=i+1 i<i+1
(@) (T.(x, 7. N, tr, 12, b)) (@19 (T, (x,y.0.N. 1,
(2)Mo (b BT
At the end states &

Oct30,2014 16/ 32

The method of symbolic value propagation

Experimental Results

(a) BB-based (b) Path-based (c) SPARK
C. Mandal, and R. M. Zimmer, “A Genetic Algorithm for the Synthesis of
Structured Data Paths,” VLSI Design (2000)
R. Camposano, “Path-based Scheduling for Synthesis,” TCAD (1991)

S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “SPARK: A High-Level Synthesis

Framework for Applying Parallelizing Compiler Transformations,” VLSI Design
(2003)

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 17 / 32

Experimental Results (contd.)

Benchmarks ||Original FSMD||Transformed FSMD|| #Variable ||#across|Maximum|Time (ms)

#state‘ #path #state‘ #path com‘uncom loops| mismatch PE‘ VP
BARCODE-1 33 54 25 56|| 17 0 0 3/20.1| 16.2
DCT-1 16 1 8 1|| 41 6 0 6| 6.3 3.6
DIFFEQ-1 15 3 9 3|| 19 3 0 4/ 5.0 26
EWF-1 34 1 26 1| 40 1 0 1| 42| 36
LCM-1 8 11 4 8 7 2 1 4 - 25
IEEE754-1 55 59 44 50(| 32 3 4 3| - 177
LRU-1 33 39 32 38|| 19 0 2 2l - 40
MODN-1 8 9 8 9|| 10 2 0 3] 5.6/ 25
PERFECT-1 6 7 4 6 8 2 2 2l - 09
QRS-1 53 35 24 35| 25 15 3 19] - 15.9
TLC-1 13 20 7 16|| 13 1 0 2/ 9.1 4.1

@

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 18 / 32

A major challenge: Loop transformations for arrays

Loop transformations are used extensively to gain speed-ups (parallelization), save
memory usage, reduce power, etc.

Loop Fusion
for (i=0; i<=7; i++) { for (11=0; 11<=3; 11++) {
for (j=0; j<=7; j++) { for (12=0; 12<=3; 12++) {
ali+1]1[j+1] = F(in); for (13=0; 13<=1; 13++) {
b} for (14=0; 14<=1; 14++) {
i = 2x11 + 13;
for (i=0; i<=7; i++) { j = 2¥12 + 14;
for (j=0; j<=7; j++) { ali+1] [j+1] = F(in);
I Pl

For array operations, equivalence of index spaces has to be ensured as
well.

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 19 / 32

Array Data Dependence Graphs (ADDGs)
Outline

@ Array Data Dependence Graphs (ADDGs)

@

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 20 / 32

Array Data Dependence Graphs (ADDGs)

inl in2
@ Array data dependence graph (ADDG) model

can capture array intensive programs [Shashidhar
rl et al., DATE 2005]

f1

& & @ ADDGs have been used to verify static affine
” programs

@ Equivalence checking of ADDGs can verify loop
transformations as well as arithmetic
transformations

f4

ADDG

@

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 20 / 32

Array Data Dependence Graphs (ADDGs)

Two equivalent array-handling programs

Loop fusion and arithmetic simplification

for (i =1; i <=N; i++) { for (i =1; i <=N; i++) {
t1[i] = al[i] + bl[il; z[i] = 2 * alil;

} }

for (j =N; j >=1; j——) {
t2[j1 = alj]l - bljl;

}

for (k= 0; k < N; k++) {
z[k+1] = t1[k+1] + t2[k+1];

}

for (i =1; i <= 100; i++) { out[i-1] = in[i+1]; }

Jargons:

Iteration domain: Domain of the index variable. {i | 1 </ < 100}

Definition domain: Domain of the (lhs) variable getting defined. {i | 0 </ < 99}
Operand domain: Domain of the operand variable. {i | 2 </ <101}

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 21 /32

Construction of ADDG-1

ADDGs are constructed in reverse order, from the output array towards

the input array(s).

for (i =1; i <=N; i++) {

t1[i] = alil + b[il;

}

for (j=N; j >=1; j——) { i1
t2[j] = alj]l - bljl;

) 7

for (k= 0; k < N; k++) {
z[k+1] = t1[k+1] + t2[k+1];

} z

ADDG-1

[Mz:{k—>k+]_IOSkSN—l}:IMﬂ:/Mtz
My = M7 o My ={k— k| 1< k< N} =M
ro:z=1t1+1t2

Kunal Banerjee (IIT Kharagpur) TCS Seminar

Oct 30, 2014

22 /32

Construction of ADDG-1

ADDGs are constructed in reverse order, from the output array towards
the input array(s).

a b

for (i =1; i <=N; i++) {

t1[i] = alil + b[il; x
}
for (j =N; j >=1; j——) { 11 2

t2[j] = aljl - bljl;
} 3
for (k = 0; k < N; k++) {

z[k+1] = t1[k+1] + t2[k+1];
} z

ADDG-1

oMy, ={j—=j|1<j<N}=nM,
thlZ{k—>k|1§k§N} ZMB:{J_>J|1§J§N}:ZM/_,
fo:z=1tl4(a—b) @

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 22 /32

Construction of ADDG-1

ADDGs are constructed in reverse order, from the output array towards
the input array(s).

a b

for (i =1; 1 <= N; i++) {

t1[i] = alil + b[i] ul -
}
for (j =N; j >=1; j——) { 11 2

t2[j]1 = aljl - blj]
) n
for (k = 0; k < N; k++) {

z[k+1] = t1[k+1] + t2[k+1];
} z

ADDG-1

aM,={i—=i|1<i<N} =M,

My=1{k > k|1<k<N}=,M,

fo 1 2= (a+ b)+ (a— b) = 2 x a — simplification possible since domains @
match

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 22 /32

Construction of ADDG-2

for (i =1; 1 <= N; i++) {
z[i] = 2 * a[il;
}

M, ={i—=i|1<i<N}=,M,
Mo={i—i|1<i<N}
rg:z=2%a

Kunal Banerjee (IIT Kharagpur) TCS Seminar

*2

ADDG-2

Oct 30, 2014

23/ 32

Equivalence of ADDGs

a b a
+ f—
tl t2 *2
+
ADDG-1 ADDG-2

Two ADDGs are said to be equivalent if their characteristic formulae — r,,
and rg, and corresponding mappings between the output arrays wrt input

array(s) — ;M2 and ;M5 match.
Hence, these two ADDGs are declared equivalent. @

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 24 / 32

Experimental Results

C lines | loops | arrays | slices Exec time (sec) Exec time (sec) - ISA
Cases ||nests|src trans|src trans|src trans|src trans|| eqv not-eqvl not-eqv2| eqv not-eqvl not-eqv2
SOB1 2127 19| 3 1 4 4 1 1/{1.79 0.61 0.75| - - -
SOB2 2127 27| 3 3| 4 4 1 1]/1.85 0.90 0.62 - - -
WAVE 1117 171 1 2| 2 2| 4 4(16.83 3.81 3.84/0.31 0.18 0.19
LAP1 212 2111 3] 2 4 1 1/|2.79 0.57 0.65| - - -
LAP2 2012 14| 1 1 2 21 2(|4.82 0.45 0.93] - - -
LAP3 2112 28| 1 4| 2 4 1 2(19.25 1.14 4.84(0.28 0.19 0.25
ACR1 1114 20| 1 3] 6 6| 1 1/|0.76 0.51 0.72/0.18 0.12 0.13
ACR2 1124 14| 4 1 6 6| 2 1//0.98 0.46 0.39] - - -
SOR 2126 22| 8 6(11 11} 1 1/{1.08 0.61 0.62/0.18 0.20 0.17
LIN1 2/13 13} 3 3| 4 4, 2 2(|0.62 0.28 0.26/0.12 0.11 0.13
LIN2 2/13 16| 3 4 4 4| 2 3(|0.74 0.20 0.33/0.13 0.12 0.13
LOWP 2/13 28] 2 8| 2 4 1 2(19.17 0.65 290 - - -

Verdoolaege et al., “Equivalence checking of static affine programs using

widening to handle recurrences,” TOPLAS (2012)

Kunal Banerjee (IIT Kharagpur)

TCS Seminar

Oct 30, 2014

@

25 / 32

Outline

© Future Work

@

Oct30,2014 26/ 32

Handling recurrences

c D
+
for (i =1; i < N; i++) { B
B[i] = C[i] + DI[il;
} +
for (i =1; i < N; i++) {
A[i] = A[i-1] + B[il; A
}
for (i =1; i < N; i++) { =
zZ[i] = Alil;
} z
ADDG

Presence of recurrences leads to cycles in the ADDG and hence a closed
form representation of r, cannot be obtained.

@

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 26 / 32

Remedy — Separate DAGs from cycles

C D
+
for (i =1; i < N; i++) { B
B[i] = C[i] + DI[il;
} +
for (i =1; i < N; i++) {
A[i] = A[i-1] + BI[il; A
}
for (i =1; i < N; i++) { =
Z[i] = A[i];
} V4
ADDG

Try to establish equivalence of the separated ADDG portions.

@

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 27 / 32

Reasoning over a finite domain

What'’s the output?

if (x+1 >=x)
printf (¢ ‘Hello’’);

else
printf (¢ ‘World’’);

@

Oct30,2014 28/ 32

Reasoning over a finite domain

What'’s the output?

if (x+1 >= x)
printf (‘¢ ‘Hello’’);

else
printf (¢ ‘World’’);

What happens if x is the maximum representable integer?
@ Qutput is World if modular arithmetic is followed
@ OQutput is Hello if saturation arithmetic is followed

@ C does not have a defined semantics for overflows, definitions of some
other behaviours differ across different standards (ANSIC, C99)

@

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 28 / 32

Reasoning over a finite domain

What'’s the output?

if (x+1 >= x)
printf (‘¢ ‘Hello’’);

else
printf (¢ ‘World’’);

What happens if x is the maximum representable integer?
@ Qutput is World if modular arithmetic is followed
@ OQutput is Hello if saturation arithmetic is followed

@ C does not have a defined semantics for overflows, definitions of some
other behaviours differ across different standards (ANSIC, C99)

Possible remedy: Bit-tracking.

@

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 28 / 32

Beware!

A word of caution

gcc — Frequently Reported Bugs

There are many reasons why a reported bug doesn't get fixed. It might be
difficult to fix, or fixing it might break compatibility. Often, reports get a
low priority when there is a simple work-around. In particular, bugs caused
by invalid code have a simple work-around: fix the code.

(source: http://gcc.gnu.org/bugs/#known)

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 29 / 32

http://gcc.gnu.org/bugs/#known

Publications

Translation Validation
FSMD

J1 K Banerjee, D Sarkar, C Mandal, “Extending the FSMD Framework for
Validating Code Motions of Array-Handling Programs,” |IEEE Trans on CAD of
ICS, (accepted).

J2 K Banerjee, C Karfa, D Sarkar, C Mandal, “Verification of Code Motion
Techniques using Value Propagation,” IEEE Trans on CAD of ICS, 2014.

C1l K Banerjee, C Mandal, D Sarkar, “ Extending the Scope of Translation Validation
by Augmenting Path Based Equivalence Checkers with SMT Solvers,” VDAT,
2014.

C2 K Banerjee, C Karfa, D Sarkar, C Mandal, “A Value Propagation Based
Equivalence Checking Method for Verification of Code Motion Techniques,” ISED,
2012.

ADDG

J3 C Karfa, K Banerjee, D Sarkar, C Mandal, “Verification of Loop and Arithmetic
Transformations of Array-Intensive Behaviours,” IEEE Trans on CAD of ICS, 2013.

C3 K Banerjee, “"An Equivalence Checking Mechanism for Handling Recurrences in @
Array-Intensive Programs,” POPL (student poster), (accepted).

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 30 /32

Publications (contd.)

C4 C Karfa, K Banerjee, D Sarkar, C Mandal, “Experimentation with SMT Solvers
and Theorem Provers for Verification of Loop and Arithmetic Transformations,”
I-CARE, 2013 (received Best Paper Award).

C5 C Karfa, K Banerjee, D Sarkar, C Mandal, “Equivalence Checking of
Array-Intensive Programs,” ISVLSI, 2011.

PRES+ (a parallel model of computation)

C6 S Bandyopadhyay, K Banerjee, D Sarkar, C Mandal, “Translation Validation for
PRES+ Models of Parallel Behaviours via an FSMD Equivalence Checker,” VDAT,
2012.

Other areas of my research interest:
@ Automatic Program Correction and Evaluation

@ Secure Hardware Design to Counter Power Analysis Attacks

@

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014 31/32

Thank you

L%/ W/

1 http://cse.iitkgp.ac.in/~kunban/
= kunalb@cse.iitkgp.ernet.in

Kunal Banerjee (IIT Kharagpur) TCS Seminar Oct 30, 2014

32 /32

http://cse.iitkgp.ac.in/~kunban/
kunalb@cse.iitkgp.ernet.in

	Background
	A formal model and related verification method
	The method of symbolic value propagation
	Array Data Dependence Graphs (ADDGs)
	Future Work

