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Background

Program: An organized list of instructions that, when executed, causes
the computer to behave in a predetermined manner.

(source: Venit et al., Prelude to Programming: Concepts and Design)
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Background

Program: An organized list of instructions that, when executed, causes
the computer to behave in a predetermined manner.
(source: Venit et al., Prelude to Programming: Concepts and Design)

We are not always happy with the programs we write.

Objectives of program optimization:
@ To speed-up the computation

@ To use less resource, eg. memory, power, etc.
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Background

Program: An organized list of instructions that, when executed, causes
the computer to behave in a predetermined manner.
(source: Venit et al., Prelude to Programming: Concepts and Design)

We are not always happy with the programs we write.

Objectives of program optimization:
@ To speed-up the computation

@ To use less resource, eg. memory, power, etc.

So, we need a compiler.
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Can you trust your compiler?

Erroneous loop reversal

sum = 0; sum = 0;

for (i=0; i<N; i++) { for (i=N; i>=0; i--) {
sum = sum + al[i]; sum = sum + al[i];

} } /* a[N] gets accessed */
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Can you trust your compiler?

Erroneous loop reversal

sum = 0; sum = 0;

for (i=0; i<N; i++) { for (i=N; i>=0; i--) {
sum = sum + al[i]; sum = sum + al[i];

} } /* a[N] gets accessed */

Program: An organized list of instructions that, when executed, causes
the computer to behave in a | predetermined manner‘.

A faulty compiler can alter the meaning of a program.

@
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What is the remedy?

@ Verified Compiler — All optimized programs will be correct by
construction.
Example: CompCert, INRIA
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What is the remedy?

@ Verified Compiler — All optimized programs will be correct by
construction.
Example: CompCert, INRIA
Limitations:

o Very hard to formally verify all passes of a compiler.
o Undecidability of the general problem of program verification restricts
the scope of the input language supported by the verified compiler.
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What is the remedy?

@ Verified Compiler — All optimized programs will be correct by
construction.
Example: CompCert, INRIA
Limitations:
o Very hard to formally verify all passes of a compiler.
o Undecidability of the general problem of program verification restricts
the scope of the input language supported by the verified compiler.

@ Translation Validation — Each individual translation is followed by a
validation phase which verifies that the target code produced correctly
implements the source code.

(This is what we do, i.e., equivalence checking of programs.)
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How to check equivalence of programs?

The general problem is undecidable.

McCarthy 91 function

int M ( int n ) { int M ( int n ) {
if (n > 100) if (n > 100)
return (n - 10); return (n - 10);
else else
return M( M (n + 11) ); return 91;
} }

Comparing two programs in totality is impossible — we should break them
into smaller chunks.

@
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Granularity of the chunks

Instruction level

x = a + b;
y =X - a;
z =y + b;

<
T
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g
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Granularity of the chunks

Instruction level

x=a+b; v/
y =X - a;
z =y + b;

Xx=a+b; v/

N
|

=2 % b;
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Granularity of the chunks

Instruction level

x=a+b; v/ x=a+b; /
y =x - a; X y = b; X
z =y + b; Z = 2 % b;

So, instruction level checking can be misleading — let’s try at basic block
level.
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Granularity of the chunks (contd.)

Basic Block level
X = a + b;
y =X - a;
z =y + b;

v =V + x;
W=y ok zZ;
} while( c1 );

N < N
o
oo
* ¥
g ¥

V=V o+ ox;
} while( c1 );
W=y *x Z;
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Granularity of the chunks (contd.)

Basic Block level

x=a+b; / Xx=a+b; v
y=x-a; v y = b; v
z=y+b; v Z = 2wy
do { do {

vV =V + X; vV =V + X;
W=y ok zZ; } while( c1 );
} while( c1 ); w=y*z
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Granularity of the chunks (contd.)

Basic Block level

X =a+b; /
y=x-a; v
z =y +b; V

v=v+x; X
W=y *z; X
} while( c1 );

x=a+b; /

y = b; v
zZ =2 % Db; V
do {

v =v+x; X
} while( c1 );
W=y ok oz;

So, checking individual basic blocks is not enough.
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Program as a combination of paths

Break a program into smaller chunks — cut loops.

Representing a program using CDFG

q1,1

y = 10; Y <20y «y+1 —/y<10,z<1
z := 1;
while (y < 20 ) { q1,3 q1,2

y =y + 1;

z =y X z; —/z<yXz —/x <=z
} q1,4
X 1= Z;

All computations of the program can be viewed as a concatenation of
paths.

Example: p1.p3, p1.p2.p3, p1-p2.P2-p3, p1.(p2)*.p3 i
TCS Seminar Oct 30,2014 9 /32



A formal model and related verification method
Outline

© A formal model and related verification method

@
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Finite State Machine with Datapath (FSMD)

FSMDs effectively capture both the control flow and the associated data
processing of a behaviour.

The FSMD model is a seven tuple F = (Q, qo, !, V, O, f, h):
Finite set of control states

Reset state, i.e. qo € Q

Set of input variables

Set of storage variables

Set of output variables

State transition function, i.e. Q x 2° — Q

>0 <8 0

Update function of the output and the storage variables, i.e.
Qx2°5 U
@ U represents a set of storage or output assignments
@ S is a set of arithmetic relations between arithmetic @
expressions
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Equivalence checking of FSMDs: A basic example

—/a<=b+c

qo,1
—/d<=a—e
q0,2
x<y/ Ix<y/
x<=x+y x<=x—d
—/t<=x+f

qo,4
—/- —/m<<t—d

90,5
—/h<=r+m

40,6

(a)Mo

Kunal Banerjee (IIT Kharagpur)

Any computation in an FSMD can be represented
by a concatenation of its computation paths

A path is an alternating sequence of states and
transitions, starting and ending at cutpoints

Identification of suitable cutpoints and the path
segments between them leads to a finite path cover
Po in Mo

For an FSMD, the reset state and all states with
multiple incoming/outgoing transitions can be
considered as the cutpoints

Length and number of computations of an FSMD
can both be infinite

Since any computation corresponds to a
concatenation of paths, it is enough to establish

path equivalences @
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A formal model and related verification method

Equivalence checking of FSMDs: A basic example

—/a<b+c

q0,1
—/d<a—e

q0,2
x<y/ Ix<y/

x<=x+y x<=x—d
—/t<=x+f

90,4
—/- —/m<<t—d

90,5
—/h<=r+m

q0.6

(a)l\/lo

Kunal Banerjee (IIT Kharagpur)

x<y/

—/a<=b+c

qi,1

X<=Xx+Yy, q1,2
d<a—e

_/_

of —/x<=x—d
91,3
—/t<=x+f,
n<r—d
q1,4

—/h<=t+n
q15

(b)My

TCS Seminar

Ix<y/d<=a—e

Two FSMDs My and M;
are equivalent if for every
path in Py there is an
equivalent path in P;
and vice versa

Code transformations
can make this job
difficult

Paths may be extended,
and the path covers are
updated accordingly

< <
{00 == qo3 ~ 0 —>

Ix<y
d1,3, 90,0 — 40,3 =
Ix<y

q1,0 = q1,3, 90,3 —

§o,0 ™~ q1,3 = q1,0} @
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A major challenge: Code motions across loops

—/t<=a+b —/t<a+b
—/t<=a+b
—/t<=a+b —/t<a+b
—/y<=a+b —/y <t —/y <=t —/y <=t
Orig BCM LCM SCM

@
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A major challenge: Code motions across loops

—/t<a+b —/t<a+b
—/t<=a+b
—/t<a+b —/t<a+b
—/y<=a+b —/y<t —Jy <t —/y <t
Orig BCM LCM SCM
A path, by definition, cannot be extended beyond a loop. @
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The method of symbolic value propagation
-
Outline

e The method of symbolic value propagation

@
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The method of symbolic value propagation

< LV, > qo0,s qi,s < LV, >
—/v <= f(x) —/v<gl(y)
(..., f(x),...) P e g(y), )
(a)/\/lo (b)M1
An example of value propagation @

Oct30,2014 14/ 32



The method of value propagation

0] (s Viyoey Vo) Fal (oo Viyeooy Vjyeos)
—/vi <= f(vn, v)) —/vi <= g(Vm)
3 (a6 Qo (qb
—/vj < h(vi, vi) —/vj <= h(vk, v)
Q) (oo F (Vs )y V) e (o g(Vm)y ey vy. )
(a)Mo (b)Mq

An example of value propagation with dependency between propagated values

@
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The method of value propagation

0,21 (oo Viyeny Vyen) al (oo Vieooy Vyen)
—/vi <= f(vn, v)) —/vi <= g(Vm)
3 (a6 Qo (qb
—/vj < h(vi, vi) —/vj <= h(vk, v)
G.c) (o F (Vo )y oy Vi) el (. g(Vm)y .oyl

B a/vi<=vi+g(vm) o " a/vi<s i+ f(va,v)

Q0. (-, 8(vm) + F(vn, v), a.z (-, 8(vim) + f(va, vj),
ce Vi) Cey Vi)
(a)Mo (b)Ml
An erroneous decision taken @
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The method of value propagation

Q.0 (Vi V) Gra) (o Vi V)
—/vi < f(va, v}) —/vi <= g(vm)

B (a0 alans
—/vj <= h(vi, vi) —/vj <= h(vi, v1)

qoc; (..., f(Vn, V), .oy h(vi,vi), o) (90 (oo g(Vim), ooy h(vi, i), .. )

B a/vi<=vi+g(vm) o " a/vi<s i+ f(va,v)

- (..., 8(Vm) + f(vn, vj), s (-, &(Vm) + F(Va, h(vic, 1)),
' ...,h(vk,v/),...> ' ...,h(vk,v/),...>
(a)Mo (b)Ml
Correct decision taken @
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The method of symbolic value propagation

Equivalence checking of FSMDs using value
propagation

<T7 <X7Y7i7 N7 tlat27h>> <T7 <X7y7 i7 Nv t17t27h>>

—/i<=1 —/i<=1l,h<=t+ to,
y=ti—t
q0,b 91,6
i<N/ Lo < N/ i<N/ i< N/
Xxesthtbh+xsi, eyt X< h+xxi,
i<=i+1 i<i+1
q0,c q1,c
(a)Mo (b) My
At the reset states &
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The method of symbolic value propagation

Equivalence checking of FSMDs using value
propagation

q0,a q1,a
—/i<=1 —/i<=1,h<=t+ to,
y<=t—b
@ <T7<X7.y7i7N7t13t2)h>> @ <T5<X7t17t27i7N7t13t2a
. . ti + t2))
i< N/ i< N/ i <N/ L mi< N/—
Xxesthtbh+xsi, eyt X< h+xxi,
i<=i+1 i<i+1
q0,c q1,c
(a)Mo (b) My
At the beginning of the loops &
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The method of symbolic value propagation

Equivalence checking of FSMDs using value
propagation

q0,a q1,a
—/i<=1 —/i<=1,h<=t+ to,
y<=t—b
q0,0) (T,(x,y,i,N,t1,ts, h)) ai,b) (T, (x,t1 — to, i, N, t1, to,
. . ti + t2))
i< N/ i< N/ i <N/ L mi< N/—
Xctht+bh+txsi, yey—t X <<= h+xxi,
i<=i+1 i<i+1
qo,c ai,c
(a)Mo (b) My
At the end of the loops &
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The method of symbolic value propagation

Equivalence checking of FSMDs using value
propagation

q0,a q1,a
—/i<=1 —/i<=1,h<=t+ to,
y<=ti—t
q0,b 91,6
i <N/ \ i <N/ i<N/ N\ i< N/—
xest+bh+txxi,\y=t—t X <<= h+xxi,
i<=i+1 i<i+1
(@) (T.(x, 7. N, tr, 12, b)) (@19 (T, (x,y.0.N. 1,
(2)Mo (b BT
At the end states &

Oct30,2014 16/ 32



The method of symbolic value propagation

Experimental Results

(a) BB-based (b) Path-based (c) SPARK
C. Mandal, and R. M. Zimmer, “A Genetic Algorithm for the Synthesis of
Structured Data Paths,” VLSI Design (2000)
R. Camposano, “Path-based Scheduling for Synthesis,” TCAD (1991)

S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “SPARK: A High-Level Synthesis

Framework for Applying Parallelizing Compiler Transformations,” VLSI Design
(2003)
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Experimental Results (contd.)

Benchmarks ||Original FSMD||Transformed FSMD|| #Variable ||#across|Maximum|Time (ms)

#state‘ #path #state‘ #path com‘uncom loops| mismatch PE‘ VP
BARCODE-1 33 54 25 56|| 17 0 0 3/20.1| 16.2
DCT-1 16 1 8 1|| 41 6 0 6| 6.3 3.6
DIFFEQ-1 15 3 9 3|| 19 3 0 4/ 5.0 26
EWF-1 34 1 26 1| 40 1 0 1| 42| 36
LCM-1 8 11 4 8 7 2 1 4 - 25
IEEE754-1 55 59 44 50(| 32 3 4 3| - 177
LRU-1 33 39 32 38|| 19 0 2 2l - 40
MODN-1 8 9 8 9|| 10 2 0 3] 5.6/ 25
PERFECT-1 6 7 4 6 8 2 2 2l - 09
QRS-1 53 35 24 35| 25 15 3 19] - 15.9
TLC-1 13 20 7 16|| 13 1 0 2/ 9.1 4.1

@
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A major challenge: Loop transformations for arrays

Loop transformations are used extensively to gain speed-ups (parallelization), save
memory usage, reduce power, etc.

Loop Fusion
for (i=0; i<=7; i++) { for (11=0; 11<=3; 11++) {
for (j=0; j<=7; j++) { for (12=0; 12<=3; 12++) {
ali+1]1[j+1] = F(in); for (13=0; 13<=1; 13++) {
b} for (14=0; 14<=1; 14++) {
i = 2x11 + 13;
for (i=0; i<=7; i++) { j = 2¥12 + 14;
for (j=0; j<=7; j++) { ali+1] [j+1] = F(in);
I Pl

For array operations, equivalence of index spaces has to be ensured as
well.
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Array Data Dependence Graphs (ADDGs)
Outline

@ Array Data Dependence Graphs (ADDGs)

@
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Array Data Dependence Graphs (ADDGs)

inl in2
@ Array data dependence graph (ADDG) model

can capture array intensive programs [Shashidhar
rl et al., DATE 2005]

f1

& & @ ADDGs have been used to verify static affine
” programs

@ Equivalence checking of ADDGs can verify loop
transformations as well as arithmetic
transformations

f4

ADDG

@
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Array Data Dependence Graphs (ADDGs)

Two equivalent array-handling programs

Loop fusion and arithmetic simplification

for (i =1; i <=N; i++ ) { for (i =1; i <=N; i++ ) {
t1[i] = al[i] + bl[il; z[i] = 2 * alil;

} }

for ( j =N; j >=1; j—— ) {
t2[j1 = alj]l - bljl;

}

for (k= 0; k < N; k++ ) {
z[k+1] = t1[k+1] + t2[k+1];

}

for (i =1; i <= 100; i++ ) { out[i-1] = in[i+1]; }

Jargons:

Iteration domain: Domain of the index variable. {i | 1 </ < 100}

Definition domain: Domain of the (lhs) variable getting defined. {i | 0 </ < 99}
Operand domain: Domain of the operand variable. {i | 2 </ <101}
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Construction of ADDG-1

ADDGs are constructed in reverse order, from the output array towards

the input array(s).

for (i =1; i <=N; i++ ) {

t1[i] = alil + b[il;

}

for ( j=N; j >=1; j——) { i1
t2[j] = alj]l - bljl;

) 7

for (k= 0; k < N; k++ ) {
z[k+1] = t1[k+1] + t2[k+1];

} z

ADDG-1

[Mz:{k—>k+]_IOSkSN—l}:IMﬂ:/Mtz
My = M7 o My ={k— k| 1< k< N} =M
ro:z=1t1+1t2
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Construction of ADDG-1

ADDGs are constructed in reverse order, from the output array towards
the input array(s).

a b

for (i =1; i <=N; i++ ) {

t1[i] = alil + b[il; x
}
for ( j =N; j >=1; j—— ) { 11 2

t2[j] = aljl - bljl;
} 3
for ( k = 0; k < N; k++ ) {

z[k+1] = t1[k+1] + t2[k+1];
} z

ADDG-1

oMy, ={j—=j|1<j<N}=nM,
thlZ{k—>k|1§k§N} ZMB:{J_>J|1§J§N}:ZM/_,
fo:z=1tl4(a—b) @
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Construction of ADDG-1

ADDGs are constructed in reverse order, from the output array towards
the input array(s).

a b

for (i =1; 1 <= N; i++ ) {

t1[i] = alil + b[i] ul -
}
for ( j =N; j >=1; j—— ) { 11 2

t2[j]1 = aljl - blj]
) n
for ( k = 0; k < N; k++ ) {

z[k+1] = t1[k+1] + t2[k+1];
} z

ADDG-1

aM,={i—=i|1<i<N} =M,

My=1{k > k|1<k<N}=,M,

fo 1 2= (a+ b)+ (a— b) = 2 x a — simplification possible since domains @
match
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Construction of ADDG-2

for (i =1; 1 <= N; i++ ) {
z[i] = 2 * a[il;
}

M, ={i—=i|1<i<N}=,M,
Mo={i—i|1<i<N}
rg:z=2%a

Kunal Banerjee (IIT Kharagpur) TCS Seminar

*2

ADDG-2
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Equivalence of ADDGs

a b a
+ f—
tl t2 *2
+
ADDG-1 ADDG-2

Two ADDGs are said to be equivalent if their characteristic formulae — r,,
and rg, and corresponding mappings between the output arrays wrt input

array(s) — ;M2 and ;M5 match.
Hence, these two ADDGs are declared equivalent. @
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Experimental Results

C lines | loops | arrays | slices Exec time (sec) Exec time (sec) - ISA
Cases ||nests|src trans|src trans|src trans|src trans|| eqv not-eqvl not-eqv2| eqv not-eqvl not-eqv2
SOB1 2127 19| 3 1 4 4 1 1/{1.79 0.61 0.75| - - -
SOB2 2127 27| 3 3| 4 4 1 1]/1.85 0.90 0.62 - - -
WAVE 1117 171 1 2| 2 2| 4 4(16.83 3.81 3.84/0.31 0.18 0.19
LAP1 212 2111 3] 2 4 1 1/|2.79 0.57 0.65| - - -
LAP2 2012 14| 1 1 2 21 2(|4.82 0.45 0.93] - - -
LAP3 2112 28| 1 4| 2 4 1 2(19.25 1.14 4.84(0.28 0.19 0.25
ACR1 1114 20| 1 3] 6 6| 1 1/|0.76 0.51 0.72/0.18 0.12 0.13
ACR2 1124 14| 4 1 6 6| 2 1//0.98 0.46 0.39] - - -
SOR 2126 22| 8 6(11 11} 1 1/{1.08 0.61 0.62/0.18 0.20 0.17
LIN1 2/13 13} 3 3| 4 4, 2 2(|0.62 0.28 0.26/0.12 0.11 0.13
LIN2 2/13 16| 3 4 4 4| 2 3(|0.74 0.20 0.33/0.13 0.12 0.13
LOWP 2/13 28] 2 8| 2 4 1 2(19.17 0.65 290 - - -

Verdoolaege et al., “Equivalence checking of static affine programs using

widening to handle recurrences,” TOPLAS (2012)
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Outline

© Future Work

@
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Handling recurrences

c D
+
for (i =1; i < N; i++ ) { B
B[i] = C[i] + DI[il;
} +
for (i =1; i < N; i++ ) {
A[i] = A[i-1] + B[il; A
}
for (i =1; i < N; i++ ) { =
zZ[i] = Alil;
} z
ADDG

Presence of recurrences leads to cycles in the ADDG and hence a closed
form representation of r, cannot be obtained.

@
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Remedy — Separate DAGs from cycles

C D
+
for (i =1; i < N; i++ ) { B
B[i] = C[i] + DI[il;
} +
for (i =1; i < N; i++ ) {
A[i] = A[i-1] + BI[il; A
}
for (i =1; i < N; i++ ) { =
Z[i] = A[i];
} V4
ADDG

Try to establish equivalence of the separated ADDG portions.

@
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Reasoning over a finite domain

What'’s the output?

if ( x+1 >=x )
printf (¢ ‘Hello’’);

else
printf (¢ ‘World’’);

@
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Reasoning over a finite domain

What'’s the output?

if ( x+1 >= x )
printf (‘¢ ‘Hello’’);

else
printf (¢ ‘World’’);

What happens if x is the maximum representable integer?
@ Qutput is World if modular arithmetic is followed
@ OQutput is Hello if saturation arithmetic is followed

@ C does not have a defined semantics for overflows, definitions of some
other behaviours differ across different standards (ANSIC, C99)

@
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Reasoning over a finite domain

What'’s the output?

if ( x+1 >= x )
printf (‘¢ ‘Hello’’);

else
printf (¢ ‘World’’);

What happens if x is the maximum representable integer?
@ Qutput is World if modular arithmetic is followed
@ OQutput is Hello if saturation arithmetic is followed

@ C does not have a defined semantics for overflows, definitions of some
other behaviours differ across different standards (ANSIC, C99)

Possible remedy: Bit-tracking.

@
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Beware!

A word of caution

gcc — Frequently Reported Bugs

There are many reasons why a reported bug doesn't get fixed. It might be
difficult to fix, or fixing it might break compatibility. Often, reports get a
low priority when there is a simple work-around. In particular, bugs caused
by invalid code have a simple work-around: fix the code.

(source: http://gcc.gnu.org/bugs/#known)
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Publications

Translation Validation
FSMD

J1 K Banerjee, D Sarkar, C Mandal, “Extending the FSMD Framework for
Validating Code Motions of Array-Handling Programs,” |IEEE Trans on CAD of
ICS, (accepted).

J2 K Banerjee, C Karfa, D Sarkar, C Mandal, “Verification of Code Motion
Techniques using Value Propagation,” IEEE Trans on CAD of ICS, 2014.

C1l K Banerjee, C Mandal, D Sarkar, “ Extending the Scope of Translation Validation
by Augmenting Path Based Equivalence Checkers with SMT Solvers,” VDAT,
2014.

C2 K Banerjee, C Karfa, D Sarkar, C Mandal, “A Value Propagation Based
Equivalence Checking Method for Verification of Code Motion Techniques,” ISED,
2012.

ADDG

J3 C Karfa, K Banerjee, D Sarkar, C Mandal, “Verification of Loop and Arithmetic
Transformations of Array-Intensive Behaviours,” IEEE Trans on CAD of ICS, 2013.

C3 K Banerjee, “"An Equivalence Checking Mechanism for Handling Recurrences in @
Array-Intensive Programs,” POPL (student poster), (accepted).
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Publications (contd.)

C4 C Karfa, K Banerjee, D Sarkar, C Mandal, “Experimentation with SMT Solvers
and Theorem Provers for Verification of Loop and Arithmetic Transformations,”
I-CARE, 2013 (received Best Paper Award).

C5 C Karfa, K Banerjee, D Sarkar, C Mandal, “Equivalence Checking of
Array-Intensive Programs,” ISVLSI, 2011.

PRES+ (a parallel model of computation)

C6 S Bandyopadhyay, K Banerjee, D Sarkar, C Mandal, “Translation Validation for
PRES+ Models of Parallel Behaviours via an FSMD Equivalence Checker,” VDAT,
2012.

Other areas of my research interest:
@ Automatic Program Correction and Evaluation

@ Secure Hardware Design to Counter Power Analysis Attacks

@
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Thank you

L%/ W/

1 http://cse.iitkgp.ac.in/~kunban/
= kunalb@cse.iitkgp.ernet.in
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