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ABSTRACT
Convolution layers are prevalent in many classes of deep neural
networks, including Convolutional Neural Networks (CNNs) which
provide state-of-the-art results for tasks like image recognition,
natural language processing, and speech recognition. �e compu-
tationally expensive nature of a convolution operation has led to
the proliferation of implementations including matrix-matrix multi-
plication formulation, FFT-formulation, Winograd transformation,
and direct convolution primarily targeting GPUs. In this paper, we
optimize a direct convolution and Winograd implementation for
x86 architectures, in particular for Xeon Phi systems, via a dynamic
compilation approach. We then show how these JIT optimizations
can be integrated in a high-level domain-speci�c language se�ing.
We shed light on what is possible and what is not possible based
on di�erent data-formats and blocking techniques. Our JIT-based
Ninja implementation shows close to theoretical peak results on
modern x86 architectures, depending on se�ing and the CPU archi-
tecture at hand.
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1 INTRODUCTION AND OVERVIEW
In the last two years, deep learning has developed into one of the
most important computational concepts. Several academic groups,
and companies, have released open source frameworks which ab-
stract many implementation details from the data scientist: Tensor-
Flow [1], Ca�e [3], to mention the most popular ones according to
GitHub stars. Although these di�erent frameworks may emphasize
di�erent workloads, one of the most important application scenario
of neural networks is image recognition, [4]. �is is implemented
via so-called convolutional neural nets (CNN). Layers of widely-
used network topologies are based on small convolutions which
can be easily mapped onto CPUs and GPUs via library functions.
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For direct convolutions, meta-programming via templates or
static compilation (e.g. [6]) are o�en employed to achieve close to
peak performance on a given architecture. �is approach not only
imposes a static compilation step, but also have to be tuned for
each topology separately. O�en kernel libraries fall back to hand-
optimized assembly code to squeeze the last bit of performance for
standard benchmark topologies, e.g. Alexnet [4].

2 IMPLEMENTATION
Prior work by [2] has shown that statically-tuned BLAS-calls in-
cur overheads for small GEMMS and therefore do not achieve the
highest performance on x86. �ey propose to use runtime code
specialization via a JIT for small GEMMs and achieve peak per-
formance. We employ a similar JIT strategy to implement fast
direct convolutions on CPUs in this paper. We lay out the convolu-
tion data for input, output, and �lter in a vectorization and cache
friendly manner, and apply standard compiler optimizations such
as register and cache blocking. Some of the key optimizations we
apply include the so�ware prefetching for Xeon Phi systems and
the code size reduction techniques to �t all specialized versions
in L1 instruction cache. We demonstrate that peak performance
can be achieved on x86 systems using this approach. One thing
to keep in mind is that our JIT does not incur the overheads of
recompilation and tuning. Our code is available open source under
h�ps://github.com/hfp/libxsmm/.

2.1 Kernel Generation
�e input parameters to convolution including N , C , K , H ,W , R,
S , u, and v vary signi�cantly across benchmarks, making it almost
impossible to achieve peak performance via static compilation. For
example, the loops to tile and their tiling factors can not be deter-
mined statically without knowing the actual values of the parame-
ters. Since these values are only known during the execution of a
neural network, we propose a runtime code specialization approach.
Beside of an actual Just-In-Time approach (lazy), an ahead-of-time
compilation (at runtime) is su�cient for all of the popular machine
learning frameworks, which defeats any latency issue during the
execution of the network. At runtime, we apply special data for-
mats for input/output/weight data, compiler optimizations such
as tiling and register blocking to optimize the seven loop nests,
runtime code specialization, and so�ware prefetching. �is makes
the Ninja code for direct convolution in x86.

2.2 Kernel Streams
In the innermost loops (W , R, S) we call the proper high-
performance JIT-ed kernel that takes six arguments: the addresses
for the input, weight and output blocks to be convoluted in the
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Figure 1: Direct convolution performance

current iteration and the addresses for the input, weight and output
blocks to be prefetched for the following iteration. �is approach ex-
hibits two performance impediments. First, the address calculations
of the corresponding tensor blocks involve integer multiplications
and additions. Second, calculating the addresses of the tensor blocks
to be prefetched entails complicated conditional statements. We
alleviate these two issues by developing a technique we call kernel
streams. During the JIT-ing phase we perform a dry run of the con-
volution loops and we compute streams of address o�sets for the
kernel call arguments. �ese streams are computed on a per-thread
basis. Subsequently, the actual convolution run is just a replay of
o�sets additions to base addresses and kernel calls in a simple loop.

2.3 Winograd
For small 3x3 �lters, Winograd based convolution is found to be
superior to direct convolutions [5]. Note that Winograd can be
thought of as a special case of FFT involving similar transforma-
tions between time domain and frequency domain. �e arithmetic
complexity of the multiplication is: N · (H/m) · (W /n) ·C ·K · (m +
R − 1) · (n + S − 1), where m and n are the height and width of a
tile of a transformation block,m = n = 1 results in the previously
discussed direct variant. For a tile size of 6x6 the arithmetic com-
plexity can be therefore signi�cantly reduced at the price of adding
bandwidth bound transformations. By transforming into frequency
space, Winograd allows to replace the convolution operation by
a point-wise multiplication which can be formulated as a batched
GEMM when being blocked over channels and/or images of the
minibatch. For best performance this operation is accelerated by a
JIT approach as well.

3 PERFORMANCE SUMMARY
Figures 1 and 2 depict the performance of LIBXSMM on a single
socket of Intel Xeon Phi 7250 (KNL) with 68 cores and a single
socket of Intel Xeon Platinum 8180 (SKX) with 28 cores. KNL o�ers
a SGEMM peak performance of 4.6 TFLOPS, whereas SKX delivers
roughly 3.2 TFLOPS for the same benchmark.

In case of direct convolutions, 5x5 and 3x3 are able to achieve
close to SGEMM peak on both platforms, whereas 1x1 convolutions
are a bit slower. In case of SKX, the large data caches help to achieve
high performance although no high bandwidth memory is present.
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Figure 2: Winograd convolution performance

Winograd is able to deliver an up to 2.2× speed-up over direct 3x3
convolutions which is expected, based on saved operations but
additionally needed transformations.

In addition to pure kernel optimizations, our work consists of
contributions, which has been subsequently released since Tensor-
Flow v1.1, and changes supporting this publication (but meant to
become part of TensorFlow). For an end-to-end run of Tensor�ow
with LIBXSMM employing the Inception v3 model we measured a
speed-up of 1.5× for inference and 1.1× for training over vanilla
Tensor�ow.

4 CONCLUSION AND FUTUREWORK
�e current status of the work demonstrates that it is possible to
implement a highly-e�cient small convolution operations for Intel
processors. �is is true for both scenarios: memory bandwidth
bound and compute bound usage. However, there are still design
parameters which can be even further optimized. Along these lines
auto-tuning of e.g. the composition of di�erent micro-kernels (e.g.
M = 24 can be built by 16+8 or 12+12) is a future research direction.
Another direction is to take kernel streams and apply this technique
to other domains where intercepting standard interfaces is of great
value, and helps to exploit hardware capabilities by the means of
processing batches of similar calls.
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MobileMark, are measured using speci�c computer systems, components, so�ware, operations and
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information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. For more infor-
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