Understanding the Performance of Small Convolution
Operations for CNN on Intel Architecture

Alexander Heinecke, Evangelos Georganas, Kunal Banerjee, Dhiraj Kalamkar, Narayanan
Sundaram, Anand Venkat, Greg Henry, Hans Pabst

Intel Corporation

ABSTRACT

Convolution layers are prevalent in many classes of deep neural
networks, including Convolutional Neural Networks (CNNs) which
provide state-of-the-art results for tasks like image recognition,
natural language processing, and speech recognition. The compu-
tationally expensive nature of a convolution operation has led to
the proliferation of implementations including matrix-matrix multi-
plication formulation, FFT-formulation, Winograd transformation,
and direct convolution primarily targeting GPUs. In this paper, we
optimize a direct convolution and Winograd implementation for
x86 architectures, in particular for Xeon Phi systems, via a dynamic
compilation approach. We then show how these JIT optimizations
can be integrated in a high-level domain-specific language setting.
We shed light on what is possible and what is not possible based
on different data-formats and blocking techniques. Our JIT-based
Ninja implementation shows close to theoretical peak results on
modern x86 architectures, depending on setting and the CPU archi-
tecture at hand.

KEYWORDS
deep learning, Intel Architecture, convolution, vectorization

ACM Reference format:

Alexander Heinecke, Evangelos Georganas, Kunal Banerjee, Dhiraj
Kalamkar, Narayanan Sundaram, Anand Venkat, Greg Henry, Hans Pabst.
2017. Understanding the Performance of Small Convolution Operations for
CNN on Intel Architecture. In Proceedings of ACM SC17 Conference, Denver,
Colorado, USA, November 2017 (SC’17), 2 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION AND OVERVIEW

In the last two years, deep learning has developed into one of the
most important computational concepts. Several academic groups,
and companies, have released open source frameworks which ab-
stract many implementation details from the data scientist: Tensor-
Flow [1], Caffe [3], to mention the most popular ones according to
GitHub stars. Although these different frameworks may emphasize
different workloads, one of the most important application scenario
of neural networks is image recognition, [4]. This is implemented
via so-called convolutional neural nets (CNN). Layers of widely-
used network topologies are based on small convolutions which
can be easily mapped onto CPUs and GPUs via library functions.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SC’17, Denver, Colorado, USA

© 2017 Copyright held by the owner/author(s). 978-x-xxxx-xxxx-X/YY/MM...$15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

For direct convolutions, meta-programming via templates or
static compilation (e.g. [6]) are often employed to achieve close to
peak performance on a given architecture. This approach not only
imposes a static compilation step, but also have to be tuned for
each topology separately. Often kernel libraries fall back to hand-
optimized assembly code to squeeze the last bit of performance for
standard benchmark topologies, e.g. Alexnet [4].

2 IMPLEMENTATION

Prior work by [2] has shown that statically-tuned BLAS-calls in-
cur overheads for small GEMMS and therefore do not achieve the
highest performance on x86. They propose to use runtime code
specialization via a JIT for small GEMMs and achieve peak per-
formance. We employ a similar JIT strategy to implement fast
direct convolutions on CPUs in this paper. We lay out the convolu-
tion data for input, output, and filter in a vectorization and cache
friendly manner, and apply standard compiler optimizations such
as register and cache blocking. Some of the key optimizations we
apply include the software prefetching for Xeon Phi systems and
the code size reduction techniques to fit all specialized versions
in L1 instruction cache. We demonstrate that peak performance
can be achieved on x86 systems using this approach. One thing
to keep in mind is that our JIT does not incur the overheads of
recompilation and tuning. Our code is available open source under
https://github.com/hfp/libxsmm/.

2.1 Kernel Generation

The input parameters to convolution including N, C, K, H, W, R,
S, u, and v vary significantly across benchmarks, making it almost
impossible to achieve peak performance via static compilation. For
example, the loops to tile and their tiling factors can not be deter-
mined statically without knowing the actual values of the parame-
ters. Since these values are only known during the execution of a
neural network, we propose a runtime code specialization approach.
Beside of an actual Just-In-Time approach (lazy), an ahead-of-time
compilation (at runtime) is sufficient for all of the popular machine
learning frameworks, which defeats any latency issue during the
execution of the network. At runtime, we apply special data for-
mats for input/output/weight data, compiler optimizations such
as tiling and register blocking to optimize the seven loop nests,
runtime code specialization, and software prefetching. This makes
the Ninja code for direct convolution in x86.

2.2 Kernel Streams

In the innermost loops (W, R, S) we call the proper high-
performance JIT-ed kernel that takes six arguments: the addresses
for the input, weight and output blocks to be convoluted in the

https://github.com/hfp/libxsmm/

SC’17, November 2017, Denver, Colorado, USA

4500
4000
3500
0 3000
O 2500
I
i5 2000
1500

1000 --Fwd-SKX = -Bwd-SKX ==Upd-SKX
500 —Fwd-KNL —Bwd-KNL—Upd-KNL
0

AN NN
’9‘ 3 b\ v w$‘ 3} N&‘ 3 é\»‘ é‘ A) ?‘N\ ",b‘N\ '&‘) »&‘) ?‘»\
M Y U DAY ‘b“"‘b H° S &"b\
g’»\ bb‘ 'ﬁ\ (ob\ ,»%\ q’b\ & Q“‘ 0\ m&\ ql
& & g GV Y & F e g S
KA A A A

Convolution parameters C,K,H,W,R,S

Figure 1: Direct convolution performance

current iteration and the addresses for the input, weight and output
blocks to be prefetched for the following iteration. This approach ex-
hibits two performance impediments. First, the address calculations
of the corresponding tensor blocks involve integer multiplications
and additions. Second, calculating the addresses of the tensor blocks
to be prefetched entails complicated conditional statements. We
alleviate these two issues by developing a technique we call kernel
streams. During the JIT-ing phase we perform a dry run of the con-
volution loops and we compute streams of address offsets for the
kernel call arguments. These streams are computed on a per-thread
basis. Subsequently, the actual convolution run is just a replay of
offsets additions to base addresses and kernel calls in a simple loop.

2.3 Winograd

For small 3x3 filters, Winograd based convolution is found to be
superior to direct convolutions [5]. Note that Winograd can be
thought of as a special case of FFT involving similar transforma-
tions between time domain and frequency domain. The arithmetic
complexity of the multiplication is: N - (H/m)- (W /n)-C-K - (m +
R-1):-(n+S - 1), where m and n are the height and width of a
tile of a transformation block, m = n = 1 results in the previously
discussed direct variant. For a tile size of 6x6 the arithmetic com-
plexity can be therefore significantly reduced at the price of adding
bandwidth bound transformations. By transforming into frequency
space, Winograd allows to replace the convolution operation by
a point-wise multiplication which can be formulated as a batched
GEMM when being blocked over channels and/or images of the
minibatch. For best performance this operation is accelerated by a
JIT approach as well.

3 PERFORMANCE SUMMARY

Figures 1 and 2 depict the performance of LIBXSMM on a single
socket of Intel Xeon Phi 7250 (KNL) with 68 cores and a single
socket of Intel Xeon Platinum 8180 (SKX) with 28 cores. KNL offers
a SGEMM peak performance of 4.6 TFLOPS, whereas SKX delivers
roughly 3.2 TFLOPS for the same benchmark.

In case of direct convolutions, 5x5 and 3x3 are able to achieve
close to SGEMM peak on both platforms, whereas 1x1 convolutions
are a bit slower. In case of SKX, the large data caches help to achieve
high performance although no high bandwidth memory is present.

A. Heinecke et al.

==Fwd-SKX ==Bwd-SKX ==Upd-SKX

12000
—Fwd-KNL —Bwd-KNL —Upd-KNL

10000
« 8000
a
o
i 6000
(U]

4000

2000

Convolution parameters C,K,H,W

Figure 2: Winograd convolution performance

Winograd is able to deliver an up to 2.2X speed-up over direct 3x3
convolutions which is expected, based on saved operations but
additionally needed transformations.

In addition to pure kernel optimizations, our work consists of
contributions, which has been subsequently released since Tensor-
Flow v1.1, and changes supporting this publication (but meant to
become part of TensorFlow). For an end-to-end run of Tensorflow
with LIBXSMM employing the Inception v3 model we measured a
speed-up of 1.5X for inference and 1.1X for training over vanilla
Tensorflow.

4 CONCLUSION AND FUTURE WORK

The current status of the work demonstrates that it is possible to
implement a highly-efficient small convolution operations for Intel
processors. This is true for both scenarios: memory bandwidth
bound and compute bound usage. However, there are still design
parameters which can be even further optimized. Along these lines
auto-tuning of e.g. the composition of different micro-kernels (e.g.
M = 24 can be built by 16+8 or 12+12) is a future research direction.
Another direction is to take kernel streams and apply this technique
to other domains where intercepting standard interfaces is of great
value, and helps to exploit hardware capabilities by the means of
processing batches of similar calls.

REFERENCES

[1] Martin Abadi and others. 2015. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. (2015). http://tensorflow.org/

[2] Alexander Heinecke, Greg Henry, Maxwell Hutchinson, and Hans Pabst. 2016.
LIBXSMM: Accelerating Small Matrix Multiplications by Runtime Code Genera-
tion (SC ’16). Article 84, 11 pages.

[3] Yangqing Jia and others. 2014. Caffe: Convolutional Architecture for Fast Feature
Embedding. arXiv preprint arXiv:1408.5093 (2014).

[4] Alex Krizhevsky, I. Sutskever, and G.E. Hinton. 2012. Image Classification with
Deep convolutional neural networks. Advances in neural information processing
systems (2012), 1097-1105.

[5] Andrew Lavin and Scott Gray. 2015. Fast Algorithms for Convolutional Neural
Networks. CoRR abs/1509.09308 (2015). http://arxiv.org/abs/1509.09308

[6] Nervana Systems. 2016. NEON. https://github.com/NervanaSystems/neon.
(2016).

Optimization Notice: Software and workloads used in performance tests may have been op-
timized for performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, operations and
functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. For more infor-
mation go to http://www.intel.com/performance. Intel, Xeon, and Intel Xeon Phi are trademarks of
Intel Corporation in the U.S. and/or other countries.

http://tensorflow.org/
http://arxiv.org/abs/1509.09308
https://github.com/NervanaSystems/neon

	Abstract
	1 Introduction and Overview
	2 Implementation
	2.1 Kernel Generation
	2.2 Kernel Streams
	2.3 Winograd

	3 Performance Summary
	4 Conclusion and Future Work
	References

