
TRANSLATION VALIDATION OF OPTIMIZING TRANSFORMATIONS OF

PROGRAMS USING EQUIVALENCE CHECKING

Kunal Banerjee

TRANSLATION VALIDATION OF OPTIMIZING TRANSFORMATIONS OF

PROGRAMS USING EQUIVALENCE CHECKING

Thesis submitted in partial fulfillment
of the requirements for the award of the degree

of

Doctor of Philosophy

by

Kunal Banerjee

Under the supervision of

Dr. Chittaranjan Mandal
and

Dr. Dipankar Sarkar

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

July 2015

c© 2015 Kunal Banerjee. All Rights Reserved.

APPROVAL OF THE VIVA-VOCE BOARD

Certified that the thesis entitled “Translation Validation of Optimizing Trans-
formations of Programs using Equivalence Checking,” submitted by Kunal
Banerjee to the Indian Institute of Technology Kharagpur, for the award of the
degree of Doctor of Philosophy has been accepted by the external examiners
and that the student has successfully defended the thesis in the viva-voce ex-
amination held today.

Prof Sujoy Ghose Prof Pallab Dasgupta
(Member of the DSC) (Member of the DSC)

Prof Santanu Chattopadhyay
(Member of the DSC)

Prof Chittaranjan Mandal Prof Dipankar Sarkar
(Supervisor) (Supervisor)

(External Examiner) (Chairman)

Date:

CERTIFICATE

This is to certify that the thesis entitled “Translation Validation of Opti-
mizing Transformations of Programs using Equivalence Checking,”, sub-
mitted by Kunal Banerjee to Indian Institute of Technology Kharagpur, is a
record of bona fide research work under our supervision and we consider it
worthy of consideration for the award of the degree of Doctor of Philosophy
of the Institute.

Chittaranjan Mandal
Professor
CSE, IIT Kharagpur

Dipankar Sarkar
Professor
CSE, IIT Kharagpur

Date:

DECLARATION

I certify that

a. The work contained in this thesis is original and has been done by myself
under the general supervision of my supervisors.

b. The work has not been submitted to any other Institute for any degree or
diploma.

c. I have followed the guidelines provided by the Institute in writing the
thesis.

d. I have conformed to the norms and guidelines given in the Ethical Code
of Conduct of the Institute.

e. Whenever I have used materials (data, theoretical analysis, and text)
from other sources, I have given due credit to them by citing them in
the text of the thesis and giving their details in the references.

f. Whenever I have quoted written materials from other sources, I have put
them under quotation marks and given due credit to the sources by citing
them and giving required details in the references.

Kunal Banerjee

ACKNOWLEDGMENTS

Upon embarking on the journey for PhD, I realized that it requires patience,
devotion, determination and diligence on a level which I had not experienced
before. The fact that I am presently at the stage of submitting my thesis is owed
to the contributions of many people. The primary sources of my inspiration
have been my supervisors, Dr Chittaranjan Mandal and Dr Dipankar Sarkar.
They have always encouraged me to pursue my goals and have extended their
help whenever needed. Secondly, I shall like to express my gratitude to my
parents who have always supported me. Thirdly, I shall like to thank my elder
brother, the first PhD in our family, who has been the primary motivator for
me to follow the doctoral degree.

Next, I thank my colleagues in our research group namely, Chandan Karfa,
Gargi Roy, K K Sharma, Partha De, Soumyadip Bandyopadhyay, Soumyajit
Dey and Sudakshina Dutta, for all the enriching discussions; I consider myself
fortunate to have found such colleagues. I also had the opportunity to spend
some delightful time with my friends Antara, Arindam, Aritra, Ayan, Bijit, Joy,
Krishnendu, Mainak, Rajorshee, Satya Gautam, Sayan, Subhomoy, Subhrang-
shu, Surajit, and many more; I thank them for their pleasant company. I am
grateful to Bappa who has been the key person in sorting out all the office re-
lated work. I am also indebted to all the anonymous reviewers of our papers;
irrespective of whether the verdict was favourable or not, I always found their
criticism helpful and they have contributed much in shaping my thesis. Lastly,
I thank Tata Consultancy Services (TCS) for awarding me TCS PhD Fellow-
ship which included contingency grants and travel grants for visiting confer-
ences both within India and abroad; this thesis is largely owed to TCS’s gener-
ous support.

Kunal Banerjee

ABSTRACT

A compiler translates a source code into a target code, often with an objective
to reduce the execution time and/or save critical resources. Thus, it relieves
the programmer of the effort to write an efficient code and instead, allows
focusing only on the functionality and the correctness of the program being
developed. However, an error in the design or in the implementation of the
compiler may result in software bugs in the target code generated by that com-
piler. Translation validation is a formal verification approach for compilers
whereby, each individual translation is followed by a validation phase which
verifies that the target code produced correctly implements the source code.
This thesis presents some translation validation techniques for verifying code
motion transformations (while underlining the special treatment required on
course to handle the idiosyncrasies of array-intensive programs), loop trans-
formations and arithmetic transformations in the presence of recurrences; it
additionally relates two competing translation validation techniques namely,
bisimulation relation based approach and path based approach.

A symbolic value propagation based equivalence checking technique over
the Finite State Machine with Datapath (FSMD) model has been developed
to check the validity of code motion transformations; this method is capable
of verifying code motions across loops as well which the previously reported
path based verification techniques could not.

Bisimulation relation based approach and path based approach provide two
alternatives for translation validation; while the former is beneficial for verify-
ing advanced code transformations, such as loop shifting, the latter surpasses
in being able to handle non-structure preserving transformations and guaran-
teeing termination. We have developed methods to derive bisimulation rela-
tions from the outputs of the path based equivalence checkers to relate these
competing translation validation techniques.

The FSMD model has been extended to handle code motion transforma-
tions of array-intensive programs with the array references represented using
McCarthy’s read and write functions. This improvement has necessitated ad-
dition of some grammar rules in the normal form used for representing arith-
metic expressions that occur in the datapath; the symbolic value propagation
based equivalence checking scheme is also adapted to work with the extended
model.

Compiler optimization of array-intensive programs involves extensive ap-
plication of loop transformations and arithmetic transformations. A major
obstacle for translation validation of such programs is posed by recurrences,
which essentially lead to cycles in the data-dependence graphs of the programs
making dependence analyses and simplifications of the data transformations
difficult. A validation scheme is developed for such programs by isolating
the cycles in the data-dependence graphs from the acyclic portions and treat-
ing them separately. Thus, this work provides a unified equivalence checking
framework to handle loop and arithmetic transformations along with recur-

xiv

rences.

Keywords: Translation Validation, Equivalence Checking, Bisimulation
Relation, Code Motion Transformation, Loop Transformation, Arithmetic Trans-
formation, Recurrence, Finite State Machine with Datapath (FSMD), Array
Data Dependence Graph (ADDG)

Contents

Abstract xiii

Table of Contents xv

List of Symbols xix

List of Figures xxi

List of Tables xxiii

1 Introduction 1
1.1 Literature survey and motivations . 2

1.1.1 Code motion transformations 3
1.1.2 Alternative approaches to verification of code motion trans-

formations: bisimulation vs path based 4
1.1.3 Loop transformations and arithmetic transformations 5
1.1.4 Objectives of the work . 7

1.2 Contributions of the thesis . 8
1.2.1 Translation validation of code motion transformations 8
1.2.2 Deriving bisimulation relations from path based equivalence

checkers . 9
1.2.3 Translation validation of code motion transformations in array-

intensive programs . 9
1.2.4 Translation validation of loop and arithmetic transformations

in the presence of recurrences 11
1.3 Organization of the thesis . 11

2 Literature Survey 13
2.1 Introduction . 13
2.2 Code motion transformations . 13

2.2.1 Applications of code motion transformations 13
2.2.2 Verification of code motion transformations 16

2.3 Bisimulation vs path based . 18
2.3.1 Bisimulation based verification 18
2.3.2 Path based equivalence checking 20

xv

xvi CONTENTS

2.4 Loop transformations and arithmetic transformations 21
2.4.1 Applications of loop transformations 21
2.4.2 Applications of arithmetic transformations 23
2.4.3 Verification of loop and arithmetic transformations 24

2.5 Conclusion . 27

3 Translation Validation of Code Motion Transformations 29
3.1 Introduction . 29
3.2 The FSMD model and related concepts 30
3.3 The method of symbolic value propagation 37

3.3.1 Basic concepts . 37
3.3.2 Need for detecting loop invariance of subexpressions 41
3.3.3 Subsumption of conditions of execution of the paths being

compared . 44
3.4 Correctness of symbolic value propagation as a method of equivalence

checking . 46
3.5 The overall verification method . 49

3.5.1 An illustrative example . 52
3.5.2 An example of dynamic loop scheduling 55

3.6 Correctness and complexity of the equivalence checking procedure . . 58
3.6.1 Correctness . 58
3.6.2 Complexity . 60

3.7 Experimental Results . 61
3.8 Conclusion . 64

4 Deriving Bisimulation Relations 67
4.1 Introduction . 67
4.2 The FSMD Model . 68
4.3 From path extension based equivalence checker 70
4.4 From symbolic value propagation based equivalence checker 75
4.5 Conclusion . 86

5 Code Motion Transformations in Array-Intensive Programs 89
5.1 Introduction . 89
5.2 The FSMDA model . 90
5.3 Characteristic tuple of a path . 91
5.4 Normalization of expressions involving arrays 92
5.5 Equivalence checking of FSMDAs 93
5.6 Correctness and complexity . 99

5.6.1 Correctness . 99
5.6.2 Complexity . 100

5.7 Experimental Results . 101
5.7.1 Current limitations . 102

5.8 Conclusion . 103

CONTENTS xvii

6 Loop and Arithmetic Transformations in the Presence of Recurrences 105
6.1 Introduction . 105
6.2 The class of supported input programs 107
6.3 The ADDG model and the associated equivalence checking scheme . 108

6.3.1 The ADDG model . 108
6.3.2 Equivalence checking of ADDGs 113
6.3.3 An overview of the method 118

6.4 Extension of the equivalence checking scheme to handle recurrences . 119
6.5 Correctness and complexity . 132

6.5.1 Correctness . 132
6.5.2 Complexity . 135

6.6 Experimental results . 136
6.7 Conclusion . 138

7 Conclusion and Scope for Future Work 139
7.1 Summary of contributions . 139
7.2 Scope for future work . 143

7.2.1 Enhancement of the present work 143
7.2.2 Scope of application to other research areas 145

A Construction of FSMDAs from Behavioural Descriptions 149
A.1 How to represent behavioural descriptions as FSMDAs conceptually . 149
A.2 How to represent FSMDAs textually 151

Bibliography 155

List of Symbols

M1, M2 Finite State Machines with Datapath (FSMDs) . 31
Qi Set of control states of FSMD Mi . 30
qi,0 Reset state of FSMD Mi . 30
I Set of input variables . 30
Vi Set of storage variables of FSMD Mi . 30
O Set of output variables . 30
τ State transition function of FSMD . 30
S Set of status expressions . 30
µ Computation in an FSMD . 30
µ1 ' µ2 Computations µ1 and µ2 are equivalent . 31
M1 vM2 An FSMD M1 is contained in an FSMD M2 . 31
q1,i A state of FSMD M1 . 32
q2,i A state of FSMD M2 . 32
α,β Paths in FSMD . 33
αs Start state of path al pha . 31
α f End (final) state of path α . 31
Rα Condition of execution of the path α . 31
rα Data transformation of the path α . 31
sα Storage variable transformations of the path α . 31
sα|x Storage variable transformations restricted over the variable x 39
θα Output list of the path α . 31
P1,P2 Path cover of the FSMDs M1 and M2 . 32
α' β Paths α and β are unconditionally equivalent . 38
α'c β Paths α and β are conditionally equivalent . 38
ϑ Propagated vector . 37
ϑi, j Propagated vector at state qi, j . 37
υ Initial propagated vector . 37
ϖi, j Null path at state qi, j . 44
δ Set of corresponding state pairs . 49
δc Set of conditionally corresponding state pairs . 75
qi, j→ qi,k The edge between the states qi, j and qi,k . 52
qi, j � qi,k The path between the states qi, j and qi,k . 33

qi, j
c
−−� qi,k

The path between the states qi, j and qi,k having c as its condition of execu-
tion . 33

v Vector of variables . 68

xix

xx CONTENTS

Dv Domain of variables present in the vector v . 68
q(v) Set of values assumed by the variables in the state q 68
σq Data state at q, an individual element of q(v) . 68
〈q,σ〉 A configuration in an FSMD . 68
η A execution sequence . 68
Ni Set of all execution sequences in FSMD Mi . 69
η1 ≡ η2 Execution sequences η1 and η2 are equivalent . 69
φi, j A relation over the data states at q1,i in M1 and q2, j in M2 69
〈q1,i,q2, j,φi, j〉 A triple in a verification relation . 69
ξ,ζ Walks in FSMD . 76
Rξ Condition of execution of the walk ξ . 76
sξ Storage variable transformations of the walk ξ . 76
θξ Output list of the walk ξ . 76
ξ' ζ Walks ξ and ζ are equivalent . 76
qi, j ; qi,k The walk between the states qi, j and qi,k . 69
rd McCarthy’s read function . 91
wr McCarthy’s write function . 91
G1,G2 Array Data Dependence Graphs (ADDGs) . 108
IS Iteration domain of the statement S . 110

SM(d)
Z Definition mapping . 110

SDd Definition domain . 110

SM(u)
Yn

Operand mapping . 110
SUYn Operand domain . 110
SMZ,Yn Dependence mapping . 111
� Right composition operator . 111
g,g1,g2 Slices in ADDG . 113
rg Data transformation of the slice g . 114
∂g Characteristic formula of the slice g . 114
gDA Definition domain of the slice g . 114
gUV Operand domain of the slice g . 114
g1 ≈ g2 g1 and g2 are matching IO-slices . 115
B1,B2 Basis subgraphs in ADDG . 124
D1,D2 Induction subgraphs in ADDG . 125
E1,E2 Recurrence subgraphs in ADDG . 126

List of Figures

3.1 (a) M1: Source FSMD. (b) M2: Transformed FSMD. 34
3.2 An example of symbolic value propagation. 39
3.3 An example of propagation of values across loop. 41
3.4 An example to illustrate the cases Rα⇒ Rβ and Rβ⇒ Rα. 45
3.5 Call graph of the proposed verification method. 52
3.6 FSMDs before and after scheduling. 54
3.7 An example of dynamic loop scheduling (DLS). 56

4.1 An example showing two execution sequences from two FSMDs. . . . 69
4.2 An example of non-equivalent programs. 77
4.3 An example of code motion across multiple loops. 81

5.1 Computing characteristic tuple of a path. 91
5.2 Propagation of index variables’ values. 94
5.3 An example of equivalence checking of FSMDAs. 97

6.1 Two programs before and after loop transformation. 106
6.2 (a) A nested-loop behaviour. (b) Its corresponding ADDG. 109
6.3 A generalized nested loop structure 109
6.4 (a) Original behaviour. (b) Transformed behaviour. 116
6.5 (a) ADDG of the original behaviour. (b) ADDG of the transformed

behaviour. 117
6.6 An example of two programs containing recurrences. 120
6.7 ADDGs for the programs given in Figure 6.6. 121
6.8 Modified subADDGs corresponding to subgraphs marked by the dot-

ted lines in Figure 6.7. 122
6.9 Modified ADDGs with new uninterpreted function for the programs

given in Figure 6.6. 122
6.10 An example where back edges exist in the absence of recurrence. . . . 123
6.11 (a) Original program. (b) Corresponding ADDG. 127
6.12 (a) Basis subgraph. (b) Induction subgraph corresponding to Figure 6.11.128
6.13 (a) Basis slice. (b) Valid induction slice 1. (c) Valid induction slice 2,

corresponding to Figure 6.8(b). 128
6.14 Relationship between different domains. 132

xxi

xxii LIST OF FIGURES

7.1 A pair of equivalent programs with non-equivalent recurrence graphs. 143
7.2 A pair of programs with shift-add multiplication. 146

A.1 Construction of FSMDA corresponding to a basic block. 150
A.2 Construction of FSMDA corresponding to a control block. 150
A.3 . 151

List of Tables

3.1 Verification results based on our set of benchmarks 61
3.2 Verification results based on the benchmarks presented in [95] 62
3.3 Verification results based on the benchmarks presented in [90] 63

5.1 Computation of propagated vectors during equivalence checking of
FSMDAs . 96

5.2 Verification results of code transformations 101

6.1 Results on some benchmarks . 137

xxiii

Chapter 1

Introduction

A compiler is a computer program which translates a source code into a target code,

often with an objective to reduce the execution time and/or save critical resources.

Thus, it relieves the programmer of the duty to write an efficient code and instead,

allows one to focus only on the functionality of a program. Hence, designers advocate

representation of an initial meta-model of a system in the form of a high-level program

which is then transformed through a sequence of optimizations applied by compilers

eventually leading to the final implementation. However, an error in the design or

in the implementation of a compiler may result in software bugs in the target code

obtained from that compiler.

Formal verification can be used to provide guarantees of compiler correctness. It

is an attractive alternative to traditional methods of testing and simulation, which tend

to be time consuming and suffer from incompleteness. There are two fundamental ap-

proaches of formal verification of compilers. The first approach proves that the steps

of the compiler are correct by construction. In this setting, to prove that an optimiza-

tion is correct, one must prove that for any input program the optimization produces

a semantically equivalent program. The primary advantage of correct by construction

techniques is that optimizations are known to be correct when the compiler is built,

before the optimized programs are run even once. Most of the techniques that provide

guarantees of correctness by construction require user interaction [105]. Moreover,

proofs of correctness by construction are harder to achieve because they must show

that any application of the optimization is correct. A correct by construction com-

1

2 Chapter 1 Introduction

piler for the C language is targeted by the CompCert compiler [112]. Since it is very

hard to formally verify all passes of a more general C compiler such as GCC [4], the

optimization passes implemented in CompCert are limited in number. Moreover, un-

decidability of the general problem of program verification restricts the scope of the

input language supported by the verified compiler; for example, the input language

supported by CompCert is Clight [29], a subset of the C language. Therefore, such

correct by construction compilers are still more of an academic interest and are yet

to transcend into industrial practices. It is important to note that even if one cannot

prove a compiler to be correct by construction, one can at least show that, for each

translation that a compiler performs, the output produced has the same behaviour as

the original behaviour. The second category of formal verification approach, called

translation validation, was proposed by Pnueli et al. in [130]; the method consists

in proving correctness each time a sequence of optimization steps is invoked. Here,

each time the compiler runs an optimization, an automated tool tries to prove that the

original program and the corresponding optimized program are equivalent. Although

this approach does not guarantee the correctness of the compilation process, it at least

ensures that any errors in specific instances of translation by the optimizer may be

detected, thereby preventing such errors from propagating any further in the synthesis

process. Another advantage of the translation validation approach is its scope of vali-

dating human expert guided transformations. The present work is aimed at developing

translation validation methodologies for several behavioural transformations. Specif-

ically, we focus on proving functional equivalence between the source behaviour and

the transformed behaviour. It is to be noted that preservation of non-functional prop-

erties, such as timing performance [156], has not been addressed in the current work.

The chapter is organized as follows. Section 1.1 presents a survey of the related

literature and brings out the motivation of the work presented in the thesis. Section 1.2

presents an overview of the thesis work and summarizes the contributions made. Fi-

nally, the outline of the thesis organization is given in Section 1.3.

1.1 Literature survey and motivations

As already discussed, a sequence of transformations may be applied to the source be-

haviour towards obtaining optimal performance in terms of execution time, energy,

1.1 Literature survey and motivations 3

etc., in course of generating the final implementation. In this section, we briefly de-

scribe several such behavioural transformations that are commonly applied by the

compilers and the different verification approaches adopted for their validation.

1.1.1 Code motion transformations

Code motion based transformations, whereby operations are moved across basic block

boundaries, are used widely in the high-level synthesis tools to improve synthesis re-

sults [48, 65, 107]. The objectives of code motions are (i) reduction of number of

computations performed at run-time and (ii) minimization of lifetimes of the tempo-

rary variables to avoid unnecessary register usage. Based on the above objectives,

code motions can be classified into three categories namely, busy, lazy and sparse

code motions [101, 138]. Busy code motions (BCMs) advance the code segments as

early as possible. Lazy code motions (LCMs) place the code segments as late as pos-

sible to facilitate code optimization. LCM is an advanced optimization technique to

remove redundant computations. It also involves common subexpression elimination

and loop-invariant code motions. In addition, it can also remove partially redundant

computations (i.e., computations that are redundant along some execution paths but

not for other alternative paths in a program). BCMs may reduce the number of com-

putations performed but it increases the life time of temporary variables. LCMs op-

timally cover both the goals. However, code size is not taken into account in either

of these two approaches as both these methods lead to code replication. Sparse code

motions additionally try to avoid code replication. The effects of several global code

motion techniques on system performance in terms of energy, power, etc., have been

shown in [66, 81–83].

Some recent works [95, 98, 100, 104, 110] target verification of code motion tech-

niques. Specifically, a Finite State Machine with Datapath (FSMD) model based

equivalence checking has been reported in [98] that can handle code transformations

confined within basic block boundaries. An improvement based on path recomposi-

tion is suggested in [100] to verify speculative code motions where the correctness

conditions are formulated in higher-order logic and verified using the PVS theorem

prover [6]. In [103, 104], a translation validation approach is proposed for high-level

synthesis. Their method establishes a bisimulation relation between a set of points in

the initial behaviour and those in the scheduled behaviour under the assumption that

4 Chapter 1 Introduction

the control structure of the behaviour does not change during the synthesis process.

An equivalence checking method for scheduling verification was proposed in [95].

This method is applicable even when the control structure of the input behaviour has

been modified by the scheduler. The work reported in [110] has identified some false-

negative cases of the algorithm in [95] and proposed an algorithm to overcome those

limitations. The method of [90] additionally handles non-uniform code motions. The

methods proposed in [90, 95, 100, 110] are basically path cover based approaches

where each behaviour is decomposed into a finite set of finite paths and equivalence of

behaviours are established by showing path level equivalence between two behaviours

captured as FSMDs. Changes in structures resulting from optimizing transformations

are accounted for by extending path segments in a particular behaviour. However, a

path cannot be extended across a loop by definition of path cover [56, 118]. Therefore,

all these methods fail in the case of code motions across loops, whereupon some code

segment before a loop body is placed after the loop body, or vice-versa. The trans-

lation validation for LCMs proposed in [150] is capable of validating code motions

across loops. However, this method assumes that there exists an injective function

from the nodes of the original code to the nodes of the transformed code. Such a

mapping may not hold for practical synthesis tools like SPARK [64]; even if it holds,

it is hard to obtain such a mapping from the synthesis tool. Another method [80]

that addresses verification of LCMs applied by the GCC compiler [4] involves ex-

plicit modification in the compiler code to generate traces that describe the applied

optimizations as sequences of predefined transformation primitives which are later

verified using the PVS theorem prover. For applying such a method to other com-

pilers, one would require similar expert knowledge about the compiler under test and

hence it is not readily compliant. It would be desirable to have a method which can

verify code motions across loops without taking any information from the synthesis

tools.

1.1.2 Alternative approaches to verification of code motion trans-

formations: bisimulation vs path based

Constructing bisimulation relations between programs as a means of translation val-

idation has been an active field of study. Translation validation for an optimizing

compiler by obtaining simulation relations between programs and their translated ver-

1.1 Literature survey and motivations 5

sions was first demonstrated by Necula in [126]. The procedure broadly consists of

two algorithms – an inference algorithm and a checking algorithm. The inference

algorithm collects a set of constraints (representing the simulation relation) in a for-

ward scan of the two programs and then the checking algorithm checks the validity

of these constraints. This work is enhanced by Kundu et al. [103, 104] to validate

the high-level synthesis process. Unlike Necula’s approach, Kundu et al.’s procedure

uses a general theorem prover, rather than specialized solvers and simplifiers, and is

thus more modular. A major limitation of these methods [103, 104, 126] is that they

cannot handle non-structure preserving transformations such as those introduced by

path based schedulers [33, 135]. The path based equivalence checkers [90, 91, 95] do

not suffer from this drawback.

On the other hand, transformations such as loop shifting [44] that can be handled

by bisimulation based methods of [103, 104] by repeated strengthening of the relation

over the data states associated with the related control locations of the source and the

target codes still elude the path based equivalence checking methods. This process

of strengthening the relation iteratively until a fixed point is reached (i.e., the relation

becomes strong enough to imply the equivalence), however, may not terminate. On

the contrary, a single pass is used to determine the equivalence/non-equivalence for

a pair of paths in the path based approaches and hence, the number of paths in a

program being finite, these methods are guaranteed to terminate. Thus, we find that

both bisimulation and path based approaches have their own merits and demerits,

and therefore, both have found application in the field of translation validation of

untrusted compilers. However, the conventionality of bisimulation as the approach

for equivalence checking raises the natural question of examining whether path based

equivalence checking yields a bisimulation relation or not.

1.1.3 Loop transformations and arithmetic transformations

Loop transformations are used to increase instruction level parallelism, improve data

locality and reduce overheads associated with executing loops of array-intensive ap-

plications [13]. On the other hand, arithmetic transformations are used to reduce the

number of computations performed and minimize register lifetimes [131]. Loop trans-

formations together with arithmetic transformations are applied extensively in the do-

main of multimedia and signal processing applications to obtain better performance in

6 Chapter 1 Introduction

terms of energy, area and/or execution time. The work reported in [30], for example,

applies loop fusion and loop tiling to several nested loops and parallelizes the resulting

code across different processors for multimedia applications. Minimization of the to-

tal energy while satisfying the performance requirements for applications with multi-

dimensional nested loops is targeted in [79]. Application of arithmetic transformations

can improve the performance of computationally intensive applications as suggested

in [131, 165]. Often loop transformation and arithmetic transformation techniques

are applied dynamically since application of one may create scope of application of

several other techniques. In all these cases, it is crucial to ensure that the intended

behaviour of the program has not been altered wrongly during transformation.

Verification of loop transformations in array-intensive programs has drawn a sig-

nificant amount of investigation. A translation validation approach based on trans-

formation specific rules is proposed in [167] for verification of loop interchange,

skewing, tiling and reversal transformations. The main drawback of this approach

is that it requires information such as the list of transformations applied and their

order of application; however, such information need not be readily available from

the synthesis tools. A symbolic simulation based approach is proposed in [119] for

verification of loop transformations for programs with no recurrence and with affine

indices and bounds. However, this method does not handle any arithmetic transfor-

mation that may be applied along with loop transformations. Basically, for multi-

ple occurrences of an array in an expression, this method loses track between each

occurrence of that array and its corresponding indices in the presence of arithmetic

transformations. Another approach for verifying array-intensive programs can be to

use off-the-shelf SMT solvers or theorem provers since the equivalence between two

programs can be modeled with a formula such that the validity of the formula im-

plies the equivalence [87]. Although SMT solvers and theorem provers can efficiently

handle linear arithmetic, they are not equally suitable for handling non-linear arith-

metic. Since array-intensive programs often contain non-linear arithmetic, these tools

are found to be inadequate for establishing equivalence of such programs [87]. The

works reported in [28, 144, 146] consider a restricted class of programs which must

have static control-flows, valid schedules, affine indices and bounds and single assign-

ment forms. In [144, 146], the original and the transformed behaviours are modeled

as ADDGs and the correctness of the loop transformations is established by showing

the equivalence between the two ADDGs. These works are capable of handling a

1.1 Literature survey and motivations 7

wide variety of loop transformation techniques without taking any information from

the synthesis tools. The method proposed in [153, 154] extends the ADDG model to

a dependence graph model to handle recurrences along with associative and commu-

tative operations. All the above methods, however, fail if the transformed behaviour

is obtained from the original behaviour by application of arithmetic transformations

such as, distributive transformations, arithmetic expression simplification, common

sub-expression elimination, constant unfolding, etc., along with loop transformations.

The work reported in [86, 88] furnishes an ADDG based method which compares AD-

DGs at slice-level rather than path-level as performed in [144] and employs a normal-

ization technique [141] for the arithmetic expressions to verify a wide variety of loop

transformations and a wide range of arithmetic transformations applied together in

array-intensive programs. However, it cannot verify programs involving recurrences

because recurrences lead to cycles in the ADDGs which is otherwise a directed acyclic

graph (DAG). The presence of cycles makes the existing data-dependence analysis

and simplification (through closed-form representations) of the data transformations

in ADDGs inapplicable. Therefore, a unified verification framework for verifying loop

and arithmetic transformations in the presence of recurrences would be beneficial.

1.1.4 Objectives of the work

The objective of this work is to verify, by way of equivalence checking, the correctness

of several behavioural transformations that are applied by compilers and also to relate

alternative translation validation techniques namely, bisimulation based approach and

path based approach. Specifically, the following objectives were identified:

1. Translation validation of code motion transformations

2. Deriving bisimulation relations from path based equivalence checkers

3. Translation validation of code motions in array-intensive programs

4. Translation validation of loop and arithmetic transformations in the presence of

recurrences

8 Chapter 1 Introduction

1.2 Contributions of the thesis

In the following, we outline in brief the contributions of this thesis on each of the

objectives identified in Section 1.1.4.

1.2.1 Translation validation of code motion transformations

Our initial objective was to develop a unified verification approach for code motion

techniques, including code motions across loops, and control structure modifications

without requiring any information from the transformation engine. This combina-

tion of features had not been achieved by any single verification technique earlier. A

preliminary version of our work appears in [21] which has later been modified consid-

erably in [22] to handle speculative code motions and dynamic loop scheduling [135].

In addition to uniform and non-uniform code motion techniques, this work aims at

verifying code motions across loops by propagating the (symbolic) variable values

through all the subsequent path segments if mismatch in the values of some live vari-

ables is detected. Repeated propagation of symbolic values is possible until an equiv-

alent path or a final path segment ending in the reset state is reached. In the latter

case, any prevailing discrepancy in values indicates that the original and the trans-

formed behaviours are not equivalent; otherwise they are. The variables whose values

are propagated beyond a loop must be invariant to that loop for valid code motions

across loops. The loop invariance of such values can be ascertained by comparing the

propagated values that are obtained while entering the loop and after one traversal of

the loop. The method has been implemented and satisfactorily tested on the outputs

of a basic block based scheduler [117], a path based scheduler [33] and the high-level

synthesis tool SPARK [64] for some benchmark examples.

Along with non-structure preserving transformations that involve path merging/

splitting (as introduced by the schedulers reported in [33, 135]), the uniform code mo-

tion techniques that can be verified by our technique include boosting up, boosting

down, duplicating up, duplicating down and useful move – a comprehensive study

on the classification of these transformations can be found in [136]; the supported

non-uniform code motion techniques include speculation, reverse speculation, safe

speculation, code motions across loops, etc. To determine the equivalence of a pair of

1.2 Contributions of the thesis 9

paths, our equivalence checker employs the normalization process described in [141]

to represent the conditions of execution and the data transformations of the paths. This

normalization technique further aids in verifying the following arithmetic code trans-

formations: associative, commutative, distributive transformations, copy and constant

propagation, common subexpression elimination, arithmetic expression simplifica-

tion, partial evaluation, constant folding/unfolding, redundant computation elimina-

tion, etc. It is important to note that the computational complexity of the method pre-

sented in [22] has been analyzed and found to be no worse than that for [90], i.e., the

symbolic value propagation (SVP) based method of [22] is capable of handling more

sophisticated transformations than [90] without incurring any extra overhead of time

complexity; in fact, as demonstrated in [22], the implementation of the SVP based

equivalence checker has been found to take less execution time in establishing equiv-

alence than those of the path extension based equivalence checkers, [95] and [90].

1.2.2 Deriving bisimulation relations from path based equivalence

checkers

In [24], we have shown how a bisimulation relation can be derived from an output

of the path extension based equivalence checker [90, 91, 95]. This work has subse-

quently been extended to derive a bisimulation relation from an output of the SVP

based equivalence checker [21, 22] as well. It is to be noted that none of the earlier

methods that establish equivalence through construction of bisimulation relations has

been shown to tackle code motion across loops; our work demonstrates, for the first

time, the existence of a bisimulation relation under such a situation.

1.2.3 Translation validation of code motion transformations in array-

intensive programs

A significant deficiency of the above mentioned equivalence checkers for the FSMD

model is their inability to handle an important class of programs, namely those in-

volving arrays. This is so because the underlying FSMD model does not provide

formalism to capture array variables in its datapath. The data flow analysis for array-

handling programs is notably more complex than those involving only scalars. For

10 Chapter 1 Introduction

example, consider two sequential statements a[i]⇐ 10 and a[j]⇐ 20, now if i = j

then the second statement qualifies as an overwrite, otherwise it does not; unavail-

ability of relevant information to resolve such relationships between index variables

may result in exponential number of case analyses. Moreover, obtaining the condition

of execution and the data transformation of a path by applying simple substitution as

outlined by Dijkstra’s weakest precondition computation may become more expensive

in the presence of arrays; conditional clauses need to be associated depicting equal-

ity/inequality of the index expressions of the array references in the predicate as it gets

transformed through the array assignment statements in the path.

In [25], we have introduced a new model namely, Finite State Machine with Data-

path having Arrays (FSMDA), which is an extension of the FSMD model equipped to

handle arrays. To alleviate the problem of determining overwrite/non-overwrite, the

SVP based method described in [21, 22] is enhanced to propagate the values assumed

by index variables1 in some path to its subsequent paths (in spite of a match); to re-

solve the problem of computing the path characteristics, the well-known McCarthy’s

read and write functions [120] (originally known as access and change, respectively)

have been borrowed to represent assignment and conditional statements involving ar-

rays that easily capture the sequence of transformations carried out on the elements

of an array and also allow uniform substitution policy for both scalars and array vari-

ables. An improvisation of the normalization process [141] is also suggested in [25]

to represent arithmetic expressions involving arrays in normalized forms.

Experimental results are found to be encouraging and attest the effectiveness of the

method [25]. It is pertinent to note that the formalism of our model allows operations

in non-single assignment form and data-dependent control flow which have posed

serious limitations for other methods that have attempted equivalence checking of

array-intensive programs [88, 146, 154]. It is also to be noted that our tool detected a

bug in the implementation of copy propagation for array variables in the SPARK [64]

tool as reported in [25].

1Index variables are basically the “scalar” variables which occur in some index expression of some

array variable.

1.3 Organization of the thesis 11

1.2.4 Translation validation of loop and arithmetic transforma-

tions in the presence of recurrences

Our work reported in [20] provides a unified equivalence checking framework based

on ADDGs to handle loop and arithmetic transformations along with recurrences –

this combination of features has not been achieved by a single verification technique

earlier to the best of our knowledge. The validation scheme proposed here isolates the

suitable subgraphs (arising from recurrences) in the ADDGs from the acyclic portions

and treats them separately; each cyclic subgraph in the original ADDG is compared

with its corresponding subgraph in the transformed ADDG in isolation and if all such

pairs of subgraphs are found equivalent, then the entire ADDGs (with the subgraphs

replaced by equivalent uninterpreted functions of proper arities) are compared using

the conventional technique of [88]. Limitations of currently available schemes are

thus overcome to handle a broader spectrum of array-intensive programs.

1.3 Organization of the thesis

The rest of the thesis has been organized into chapters as follows.

Chapter 2 provides a detailed literature survey on different code motion transforma-

tions, loop transformations and arithmetic transformations in embedded system

specifications along with a discussion on some alternative approaches to code

motion validation namely, bisimulation based and path based methods. In the

process, it identifies the limitations of the state-of-the-art verification methods

and underlines the objectives of the thesis.

Chapter 3 introduces the FSMD model and the path extension based equivalence

checking method over this model. The notion of symbolic value propagation

(SVP) is explained and then an SVP based equivalence checking method of FS-

MDs for verifying code motion transformations with a focus on code motions

across loops is described. The correctness and the complexity of the verifica-

tion procedure are formally treated. A clear improvement over the earlier path

extension based methods is also demonstrated through the experimental results.

12 Chapter 1 Introduction

Chapter 4 covers the definition of simulation and bisimulation relations between FSMD

models and elaborates on the methods of deriving these relations from the out-

puts of the path extension based equivalence checkers and the outputs of the

SVP based equivalence checkers.

Chapter 5 introduces the FSMDA model with the array references and operations rep-

resented using McCarthy’s read and write functions. The method of obtaining

the characteristic tuple of a path in terms of McCarthy’s functions is explained

next. The enhancements needed in the normalization technique to represent

array references is elucidated. The modified SVP based equivalence check-

ing scheme for the FSMDA model is then illustrated. The chapter provides

a theoretical analysis of the method. Finally, an experiment involving several

benchmark problems has been described.

Chapter 6 introduces the ADDG model and the related equivalence checking method.

Then it covers the extension of the ADDG based equivalence checking tech-

nique to handle array-intensive programs which have undergone loop and arith-

metic transformations in the presence of recurrences. The correctness of the

proposed method is formally proved and the complexity is analyzed subse-

quently. The superior performance of our method in comparison to other com-

peting methods is also empirically established.

Chapter 7 concludes our study in the domain of translation validation of optimizing

transformations of programs that are applied by compilers and discusses some

potential future research directions.

Chapter 2

Literature Survey

2.1 Introduction

An overview of important research contributions in the area of optimizing transfor-

mations is provided in this chapter. For each class of transformations targeted by this

thesis, (i) we first study several applications of these transformations to underline their

relevance is system design, (ii) we then survey existing verification methodologies for

these optimizing transformations and in the process identify their limitations to em-

phasize on the prominent gaps in earlier literature which this thesis aims to fill. For

the alternative approaches to translation validation of code motion transformations

namely, bisimulation based method and path based method, we discuss about their

various applications in the field of verification.

2.2 Code motion transformations

2.2.1 Applications of code motion transformations

Designing parallelizing compilers often require application of code motion techniques

[10, 54, 61, 74, 101, 108, 124, 127, 138]. Recently, code motion techniques have been

successfully applied during scheduling in high-level synthesis. Since the compilers

13

14 Chapter 2 Literature Survey

investigated in this thesis are broadly from the domain of embedded system design, in

the following, we study the applications of code motion techniques in the context of

embedded system design, especially high-level synthesis.

The works reported in [47, 48, 136] support generalized code motions during

scheduling in synthesis systems, whereby operations can be moved globally irrespec-

tive of their position in the input. These works basically search the solution space and

determine the cost associated with each possible solution; eventually, the solution with

the least cost is selected. To reduce the search time, the method of [47, 48] proposes a

pruning technique to intelligently select the least cost solution from a set of candidate

solutions.

Speculative execution is a technique that allows a superscalar processor to keep its

functional units as busy as possible by executing instructions before it is known that

they will be needed, i.e., some computations are carried out even before the execu-

tion of the conditional operations that decide whether they need to be executed at all.

The paper [107] presents techniques to integrate speculative execution into schedul-

ing during high-level synthesis. This work shows that the paths for speculation need

to be decided according to the criticality of individual operations and the availability

of resources in order to obtain maximum benefits. It has been demonstrated to be

a promising technique for eliminating performance bottlenecks imposed by control

flows of programs, thus resulting in significant gains (up to seven-fold) in execution

speed. Their method has been integrated into the Wavesched tool [106].

A global scheduling technique for superscalar and VLIW processors is presented

in [123]. This technique targets parallelization of sequential code by removing anti-

dependence (i.e., write after read) and output dependence (i.e., write after write) in

the data flow graph of a program by renaming registers, as and when required. The

code motions are applied globally by maintaining a data flow attribute at the begin-

ning of each basic block which designates what operations are available for moving

up through this basic block. A similar objective is pursued in [41]; this work com-

bines the speculative code motion techniques and parallelizing techniques to improve

scheduling of control flow intensive behaviours.

In [77], the register allocation phase and the code motion methods are combined to

obtain a better scheduling of instructions with less number of registers. Register allo-

2.2 Code motion transformations 15

cation can artificially constrain instruction scheduling, while the instruction scheduler

can produce a schedule that forces a poor register allocation. The method proposed in

this work tries to overcome this limitation by combining these two phases of high-level

synthesis. This problem is further addressed in [26]; this method analyzes a program

to identify the live range overlaps for all possible placements of instructions in basic

blocks and all orderings of instructions within blocks and based on this information,

the authors formulate an optimization problem to determine code motions and partial

local schedules that minimize the overall cost of live range overlaps. The solutions of

the formulated optimization problem are evaluated using integer linear programming,

where feasible, and a simple greedy heuristic. A method for elimination of parallel

copies using code motion on data dependence graphs to optimize register allocation

can be found in [31].

The effectiveness of traditional compiler techniques employed in high-level syn-

thesis of synchronous circuits is studied for asynchronous circuit synthesis in [161]. It

has been shown that the transformations like speculation, loop invariant code motion

and condition expansion are applicable in decreasing mass of handshaking circuits

and intermediate modules.

Benefits of applying code motions to improve results of high-Level synthesis has

also been demonstrated in [63, 65, 66], where the authors have used a set of speculative

code motion transformations that enable movement of operations through, beyond,

and into conditionals with the objective of maximizing performance. Speculation, re-

verse speculation, early condition execution, conditional speculation techniques are

introduced by them in [65, 69, 70]. They present a scheduling heuristic that guides

these code motions and improves scheduling results (in terms of schedule length and

finite state machine states) and logic synthesis results (in terms of circuit area and de-

lay) by up to 50 percent. In [62, 63], two novel strategies are presented to increase

the scope for application of speculative code motions: (i) adding scheduling steps

dynamically during scheduling to conditional branches with fewer scheduling steps;

this increases the opportunities to apply code motions such as conditional speculation

that duplicate operations into the branches of a conditional block and (ii) determin-

ing if an operation can be conditionally speculated into multiple basic blocks either

by using existing idle resources or by creating new scheduling steps; this strategy

leads to balancing of the number of steps in the conditional branches without increas-

ing the longest path through the conditional block. Classical common sub-expression

16 Chapter 2 Literature Survey

elimination (CSE) technique fails to eliminate several common sub-expressions in

control-intensive designs due to the presence of a complex mix of control and data

flow. Aggressive speculative code motions employed to schedule control intensive

designs often re-order, speculate and duplicate operations, changing thereby the con-

trol flow between the operations with common sub-expressions. This leads to new

opportunities for applying CSE dynamically. This observation is utilized in [68] and a

new approach called dynamic common sub-expression elimination is introduced. The

code motion techniques and heuristics described in this paragraph have been imple-

mented in the SPARK high-level synthesis framework [64].

Energy management is of concern to both hardware and software designers. An

energy-aware code motion framework for a compiler is explained in [159] which ba-

sically tries to cluster accesses to input and output buffers, thereby extending the time

period during which the input and output buffers are clock or power gated. Another

method [114] attempts to change the data access patterns in memory blocks by em-

ploying code motions in order to improve the energy efficiency and performance of

STT-RAM based hybrid cache. Some insights into how code motion transformations

may aid in the design of embedded reconfigurable computing architectures can be

found in [46].

2.2.2 Verification of code motion transformations

Recently, in [125], a proof construction mechanism has been proposed to verify a few

transformations performed by the LLVM compiler [5]; these proofs are later checked

for validity using the Z3 theorem prover [9]. Formal verification of single assignment

form based optimizations for the LLVM compiler has been addressed in [163]. Sim-

ilar to Section 2.2.1, henceforth we shall focus on the verification strategies targeting

validation of code motions of embedded system specifications.

A formal verification of scheduling process using the FSMD model is reported

in [99]. In this paper, cut-points are introduced in both the FSMDs followed by con-

struction of the respective path covers. Subsequently, for every path in one FSMD,

an equivalent path in the other FSMD is searched for. Their method requires that the

control structure of the input FSMD is not disturbed by the scheduling algorithm and

code has not moved beyond basic block boundaries. This implies that the respective

2.2 Code motion transformations 17

path covers obtained from the cut-points are essentially bijective. This requirement,

however, imposes a restriction that does not necessarily hold because the scheduler

may merge the paths of the original specification into one path of the implementation

or distribute operations of a path over various paths for optimization of time steps.

A Petri net based verification method for checking the correctness of algorithmic

transformations and scheduling process in high-level synthesis is proposed in [36].

The initial behaviour is converted first into a Petri net model which is expressed by a

Petri net characteristic matrix. Based on the input behaviours, they extract the initial

firing pattern. If there exists at least one candidate who can allow the firing sequence

to execute legally, then the high-level synthesis result is claimed as a correct solution.

All these verification approaches, however, are well suited for basic block based

scheduling [76, 111], where the operations are not moved across the basic block

boundaries and the path-structure of the input behaviour does not modify due to

scheduling. These techniques are not applicable to the verification of code motion

techniques since they entail code being moved from one basic block to other basic

blocks.

Some recent works, such as, [100, 103, 104] target verification of code motion

techniques. Specifically, a path recomposition based FSMD equivalence checking has

been reported in [100] to verify speculative code motions. The correctness conditions

are formulated in higher-order logic and verified using the PVS theorem prover [6].

Their path recomposition over conditional blocks fails if non-uniform code motion

transformations are applied by the scheduler. In [103, 104], a translation validation

approach is proposed for high-level synthesis. Bisimulation relation approach is used

to prove equivalence in this work. Their method automatically establishes a bisim-

ulation relation that states which points in the initial behaviour are related to which

points in the scheduled behaviour. This method apparently fails to find the bisimu-

lation relation if codes before a conditional block are not moved to all branches of

the conditional block. This method also fails when the control structure of the initial

program is transformed by the path-based scheduler [33]. An equivalence checking

method for scheduling verification is given in [95]. This method is applicable even

when the control structure of the input behaviour has been modified by the sched-

uler. It has been shown that this method can verify uniform code motion techniques.

In [17], another Petri net based verification strategy is described which represents

18 Chapter 2 Literature Survey

high-level synthesis benchmarks as untimed Petri net based Representation of Em-

bedded Systems (PRES+) models [43] by first translating them into FSMD models

and subsequently feeding them to the FSMD equivalence checker of [95]. The work

reported in [110] has identified some false-negative cases of the algorithm in [95] and

proposed an algorithm to overcome those limitations. This method is further extended

in [90] to handle non-uniform code motions as well. An equivalence checking method

for ensuring the equivalence between an algorithm description and a behavioural reg-

ister transfer language (RTL) modeled as FSMDs is given in [71].

None of the above mentioned techniques has been demonstrated to handle code

motions across loops. Hence, it would be desirable to have an equivalence checking

method that would encompass the ability to verify code motions across loops along

with uniform and non-uniform code motions and transformations which alter the con-

trol structure of a program.

2.3 Alternative approaches to verification of code mo-

tion transformations: bisimulation and path based

2.3.1 Bisimulation based verification

Transition systems are used to model software and hardware at various abstraction

levels. The lower the abstraction level, the more implementation details are present.

It is important to verify that the refinement of a given specification retains the in-

tended behaviour. Bisimulation equivalence aims to identify transition systems with

the same branching structure, and which thus can simulate each other in a step-wise

manner [16]. In essence, a transition system T can simulate transition system T ′ if ev-

ery step of T can be matched by one (or more) steps in T ′. Bisimulation equivalence

denotes the possibility of mutual, step-wise simulation. Initially, bisimulation equiva-

lence was introduced as a binary relation between transition systems over the same set

of atomic propositions, e.g., bisimulation equivalence between communicating sys-

tems as defined by Milner in [122]. However, formulating bisimulation relations in

terms of small steps (such as, individual atomic propositions) makes it difficult to rea-

son directly about large program constructs, such as loops and procedures, for which

2.3 Bisimulation vs path based 19

a big step semantics is more natural [102].

Bisimulation based verification has found applications in various fields, such as

labeled transition systems [53], concurrent systems [45], timed systems [149], well-

structured graphs [49], probabilistic processes [14, 15]. Scalability issues of bisimula-

tion based approaches have been tackled in [37, 55, 157]. A comprehensive study on

bisimulation can be found in [16, 140]. Henceforth, we focus on bisimulation based

techniques which target verification of code motion transformations.

An automatic verification of scheduling by using symbolic simulation of labeled

segments of behavioural descriptions has been proposed in [51]. In this paper, both

the inputs to the verifier namely, the specification and the implementation, are repre-

sented in the Language of Labeled Segments (LLS). Two labeled segments S1 and S2

are bisimilar iff the same data-operations are performed in them and control is trans-

formed to the bisimilar segments. The method described in this paper transforms the

original description into one which is bisimilar with the scheduled description.

In [126], translation validation for an optimizing compiler by obtaining simulation

relations between programs and their translated versions was first demonstrated. This

procedure broadly consists of two algorithms – an inference algorithm and a check-

ing algorithm. The inference algorithm collects a set of constraints (representing the

simulation relation) in a forward scan of the two programs and then the checking

algorithm checks the validity of these constraints. Building on this foundation, the au-

thors of [103, 104] have validated the high-level synthesis process. Unlike the method

of [126], their procedure takes into account statement-level parallelism since hardware

is inherently concurrent and one of the main tasks that high-level synthesis tools per-

form is exploiting the scope of parallelizing independent operations. Furthermore, the

algorithm of [103, 104] uses a general theorem prover, rather than specialized solvers

and simplifiers (as used by [126]), and is thus more modular. Advanced code trans-

formations, such as loop shifting [44], can be verified by [103, 104], albeit at the cost

of foregoing termination property of their verification algorithm. A major limitation

of these methods [103, 104, 126] is that they cannot handle non-structure preserving

transformations such as those introduced by path based schedulers [33, 135]; in other

words, the control structures of the source and the target programs must be identical if

one were to apply these methods. This limitation is alleviated to some extent in [115].

The authors of [115] have studied and identified what kind of modifications the con-

20 Chapter 2 Literature Survey

trol structures undergo on application of some path based schedulers and based on

this knowledge they try to establish which control points in the source and the target

programs are to be correlated prior to generating the simulation relations. The ability

to handle control structure modifications which are applied by [135], however, still

remain beyond the scope of currently known bisimulation based techniques.

2.3.2 Path based equivalence checking

Path based equivalence checking was proposed as a means of translation validation

for optimizing compilers. Consequently, much of it has already been covered in Sec-

tion 2.2.2. Nevertheless, we provide a gist of path based equivalence checking strate-

gies for the sake of completeness. However, to avoid repetition, here we only underline

its salient features and thereby highlight its complementary advantages as compared

to bisimulation based verification. Path based equivalence checking was first proposed

in [91], whereby the source and the transformed programs are represented as FSMDs

segmented into paths, and for every path in an FSMD, an equivalent path is searched

for in the other FSMD; on successful discovery of pairs of equivalent paths such that

no path in either FSMD remains unmatched, the two FSMDs are declared equivalent.

This method is demonstrated to handle complicated modifications of the control struc-

tures introduced by path based scheduler [33] as well as [135]. This method is further

enhanced in [90, 95, 110] to increase its power of handling diverse code motion trans-

formations. Its prowess in verifying optimizations applied during various stages of

high-level synthesis has been displayed in [89, 92–94, 97]. Note that when a path

from a path cover is checked for equivalence, the number of paths yet to be checked

for equivalence in that path cover decreases by one; also, the number of paths in a

path cover is finite; as a result, all the path based equivalence checking methods are

guaranteed to terminate. The loop shifting code transformation [44], however, cannot

yet be verified by modern path based equivalence checkers.

Thus, we find that bisimulation based verification and path based equivalence

checking have complementary merits and demerits. While the former beats the lat-

ter in its ability of handle loop shifting, the latter is more proficient in handling non-

structure preserving transformations and, unlike the former, is guaranteed to terminate.

Accordingly, both have found applications in the domain of translation validation.

However, bisimulation being a more conventional approach, it may be worthwhile to

2.4 Loop transformations and arithmetic transformations 21

investigate whether an (explicit) bisimulation relation can be derived from the outputs

of path based equivalence checkers. On a similar note, a relation transition system

model is proposed in [73] to combine the benefits of Kripke logical relations and

bisimulation relations to reason about programs.

2.4 Loop transformations and arithmetic transforma-

tions

2.4.1 Applications of loop transformations

Loop transformations along with arithmetic transformations are applied extensively

in the domain of multimedia and signal processing applications. These transforma-

tions can be automatic, semi-automatic or manual. In the following, we study several

applications of loop transformations techniques during embedded system design.

The effects of loop transformations on system power has been studied exten-

sively. In [82], the impact of loop tiling, loop unrolling, loop fusion, loop fission

and scalar expansion on energy consumption has been underlined. In [81], it has been

demonstrated that conventional data locality oriented code transformations are insuf-

ficient for minimizing disk power consumption. The authors of [81] instead propose

a disk layout aware application optimization strategy that uses both code restructur-

ing and data locality optimization. They focus on three optimizations namely, loop

fusion/fission, loop tiling and linear optimizations for code restructuring and also pro-

pose a unified optimizer that targets disk power management by applying these trans-

formations. The work reported in [83] exhibits how code and data optimizations help

to reduce memory energy consumption for embedded applications with regular data

access patterns on an MPSoC architecture with a banked memory system. This is

achieved by ensuring bank locality, which means that each processor localizes its ac-

cesses into a small set of banks in a given time period. A novel memory-conscious

loop parallelization strategy with the objective of minimizing the data memory re-

quirements of processors has been suggested in [158]. The work in [78] presents a

data space-oriented tiling (DST) approach. In this strategy, the data space is logically

divided into chunks, called data tiles, and each data tile is processed in turn. Since

22 Chapter 2 Literature Survey

a data space is common across all nests that access it, DST can potentially achieve

better results than traditional iteration space (loop) tiling by exploiting inter-nest data

locality. Improving data locality not only improves effective memory access time but

also reduces memory system energy consumption due to data references. A more

global approach to identify data locality problem is taken in [113] which proposes a

compiler driven data locality optimization strategy in the context of embedded MP-

SoCs. An important characteristic of this approach is that in deciding the workloads

of the processors (i.e., in parallelizing the application), it considers all the loop nests

in the application simultaneously. Focusing on an embedded chip multiprocessor and

array-intensive applications, the work reported in [35] shows how reliability against

transient errors can be improved without impacting execution time by utilizing idle

processors for duplicating some of the computations of the active processors. It also

conveys how the balance between power saving and reliability improvement can be

achieved using a metric called the energy-delay-fallibility product.

Loop transformations have found application in the design of system memory as

well. For example, in [30], a technique is proposed to reduce cache misses and cache

size for multimedia applications running on MPSoCs. Loop fusion and tiling are

used to reduce cache misses, while a buffer allocation strategy is exploited to reduce

the required cache size. The loop tiling exploration is further extended in [162] to

also accommodate dependence-free arrays. They propose an input-conscious tiling

scheme for off-chip memory access optimization. They show that the input arrays

are as important as the arrays with data dependencies when the focus is on memory

access optimization instead of parallelism extraction. It has been known that external

memory bandwidth is a crucial bottleneck in the majority of computation-intensive ap-

plications for both performance and power consumption. Data reuse is an important

technique for reducing the external memory access by utilizing the memory hierarchy.

Loop transformation for data locality and memory hierarchy allocation are two major

steps in data reuse optimization flow. The paper presented in [39] provides a com-

bined approach which optimizes loop transformation and memory hierarchy alloca-

tion simultaneously to achieve global optimal results on external memory bandwidth

and on-chip data reuse buffer size. This work is enhanced in [40] for optimizing the

on-chip memory allocation by loop transformations in the imperfectly nested loops.

A method to minimize the total energy while satisfying the performance require-

ments for application with multi-dimensional nested loops was proposed in [85]. They

2.4 Loop transformations and arithmetic transformations 23

have shown that an adaptive loop parallelization strategy combined with idle proces-

sor shut down and pre-activation can be very effective in reducing energy consumption

without increasing execution time. The objective of the paper [134] is also the same

as that of [85]. However, they apply loop fusion and multi-functional unit scheduling

techniques to achieve that.

In [60], a novel loop transformation technique optimizes loops containing nested

conditional blocks. Specifically, the transformation takes advantage of the fact that

the Boolean value of the conditional expression, determining the true/false paths, can

be statically analyzed using a novel interval analysis technique that can evaluate con-

ditional expressions in the general polynomial form. Results from interval analysis

combined with loop dependency information is used to partition the iteration space

of the nested loop. This technique is particularly well suited for optimizing embed-

ded compilers, where an increase in compilation time is acceptable in exchange for

significant performance increase.

A survey on application of loop transformations in data and memory optimization

in embedded system can be found in [129]. The IMEC group [34, 128] pioneered the

work on program transformations to reduce energy consumption in data dominated

embedded applications. In [57], loop fusion technique is used to optimize multimedia

applications before the hardware/software partitioning to reduce the use of tempo-

rary arrays. Loop transformations have also been applied to improve performance

in coarse-grained reconfigurable architecture [116]. Applications of loop transforma-

tions to parallelize sequential code targeting embedded multi-core systems are given

in [132, 160]. Several other loop transformation techniques and their effects on em-

bedded system design may be found in [32, 52, 59, 155, 164].

2.4.2 Applications of arithmetic transformations

Compiler optimizations often involve several arithmetic transformations based on al-

gebraic properties of the operator such as associativity, commutativity and distribu-

tivity, arithmetic expression simplification, constant folding, common sub-expression

elimination, renaming, dead code elimination, copy propagation and operator strength

reduction, etc. Application of retiming, algebraic and redundancy manipulation trans-

formations to improve the performance of embedded systems is proposed in [131].

24 Chapter 2 Literature Survey

They introduced a new negative retiming technique to enable algebraic transforma-

tions to improve latency/throughput. In [165], the use of algebraic transformations to

improve the performance of computationally intensive applications are suggested. In

this paper, they investigate source-to-source algebraic transformations to minimize

the execution time of expression evaluation on modern computer architectures by

choosing a better way to compute the expressions. They, basically, propose to re-

place traditional associative commutative pattern-matching techniques which suffer

from scalability issues by two performance enhancing algorithms providing factor-

ization and multiply-add extraction heuristics and choice criteria based on a simple

cost model. Operation cost minimization by loop-invariant code motion and operator

strength reduction is proposed in [67] to achieve minimal code execution within loops

and reduced operator strengths. The effectiveness of such source-level transformations

is demonstrated in [67] with two real-life multimedia application kernels by compar-

ing the improvements in the number of execution cycles, before and after applying

the optimizations. Application of algebraic transformations to minimize critical path

length in the domain of computationally intensive applications is proposed in [109].

Apart from standard algebraic transformations such as commutativity, associativity

and distributivity, they also introduce two hardware related transformations based on

operator strength reduction and constant unfolding. A set of transformations such as

common sub-expression elimination, renaming, dead code elimination and copy prop-

agation are applied along with code motion transformations in the pre-synthesis and

scheduling phase of high-level synthesis in the SPARK tool [64, 66]. The potential of

arithmetic transformations on FPGAs is studied in [50]. It has been shown that oper-

ator strength reduction and storage reuse reduce the area of the circuit and hence the

power consumption in FPGA. The transformations like height reduction and variable

renaming reduce the total number of clock cycles required to execute the programs in

FPGAs whereas expression splitting and resource sharing reduce the clock period of

the circuits.

2.4.3 Verification of loop and arithmetic transformations

Verification of loop transformations on array-intensive programs is a well studied

problem. Some of these target transformation specific verification rules. For exam-

ple, the methods of [166, 167] proposed permutation rules for verification of loop

2.4 Loop transformations and arithmetic transformations 25

interchange, skewing, tiling, reversal transformations in their translation validation

approach. The rule set is further enhanced in [27, 72]. The main drawback of this

approach is that the method had to rely on the hint provided by the compiler. The

verifier needs the transformations that have been applied and the order in which they

have been applied from the synthesis tool. Also, completeness of the verifier depends

on the completeness of the rule set and therefore enhancement of the repository of

transformations necessitates enhancement of the rule set.

A method called fractal symbolic analysis has been proposed in [121]. The idea

is to reduce the gap between the source and the transformed behaviour by repeatedly

applying simplification rules until the two behaviours become similar enough to allow

a proof by symbolic analysis. The rules are similar to the ones proposed by [166, 167].

This method combines some of the power of symbolic analysis with the tractability of

dependence analysis. The power of this method again depends on the availability of

the rule set.

A fully automatic verification method for loop transformations is given in [139].

They have used data dependence analysis and shown the preservation of the depen-

dencies in the original and in the transformed program. The program representation

used in this work allows only a statement-level equivalence checking between the pro-

grams. Therefore, this method cannot handle arithmetic transformations. It is com-

mon that data-flow transformations, such as expression propagations and algebraic

transformations, are applied in conjunction with or prior to applying loop transforma-

tions. Therefore, direct correspondence between the statement classes of the original

and the transformed programs does not always hold as required by [139].

The method developed in [144–147] considers a restricted class of programs which

must have static control flow, valid schedule, affine indices and bounds, and single

assignment form. The authors have proposed an equivalence checking method for

verification of loop transformations, where the original and the transformed programs

are modeled as Array Data Dependence Graphs (ADDGs). This method is promis-

ing since it is capable of handling most of the loop transformation techniques without

taking any information from the compilers. The main limitations of the ADDG based

method are its inability to handle the following cases: recurrences, data-dependent

assignments and accesses, and arithmetic transformations. The method proposed

in [153, 154] extends the ADDG model to a dependence graph to handle recurrences

26 Chapter 2 Literature Survey

and also additionally verifies the associative and the commutative data transforma-

tions.

SMT solvers such as CVC4 [3], Yices [7] or theorem provers such as ACL2 [1]

can also be used to verify loop transformations. The equivalence between two pro-

grams can be modeled with a formula such that the validity of the formula implies the

equivalence [87]. Although the SMT solvers and the theorem prover can efficiently

handle linear arithmetic, they are not equally potent in handling non-linear arithmetic.

Since array-intensive programs (with loops) often contain non-linear arithmetic, these

tools are not efficient in handling equivalence of such programs [87].

All the above methods fail if the transformed behaviour is obtained from the orig-

inal behaviour by application of arithmetic transformations such as, distributive trans-

formations, arithmetic expression simplification, constant unfolding, common sub-

expression elimination, etc., along with loop transformations. The definition of equiv-

alence of ADDGs proposed in [144, 146] cannot be extended easily (as in the cases of

commutative and associative transformations) to handle these arithmetic transforma-

tions. Consequently, a slice-level equivalence of ADDGs is proposed in [86, 88] (as

opposed to path-level equivalence of [144, 146]), which additionally incorporates a

normalization technique [141] extended suitably to represent data transformations.

This method is found capable of establishing equivalence in the presence of both

loop and arithmetic transformations. It has also been used in checking correctness

of process network level transformations for multimedia and signal processing appli-

cations [96]. The initial and the transformed behaviors are both modeled as ADDGs

and the verification problem is posed as checking of equivalence between the two AD-

DGs. This technique, however, cannot handle recurrences because recurrences lead to

cycles in the data-dependence graph of a program which make dependence analyses

and simplifications (through closed-form representations) of the data transformations

difficult.

Hence, it would be desirable to develop a unified equivalence checking framework

to handle loop and arithmetic transformations along with recurrences.

2.5 Conclusion 27

2.5 Conclusion

In this chapter, we have discussed several applications of code motion transforma-

tions, loop transformations and arithmetic transformation, which are applied by con-

temporary compilers, especially in embedded system design. The state-of-the-art ver-

ification methods for these transformations are also discussed in this chapter. In the

process, we have identified some limitations of existing verification methods. In the

subsequent chapters, we present verification methods for these transformations which

overcome the limitations identified in this chapter. Two alternative schemes for veri-

fying code motion transformations have also been discussed: bisimulation based ver-

ification and path based equivalence checking. Merits and demerits of both the ap-

proaches have been underlined. A way to relate these apparently different verification

strategies has also been explored in a subsequent chapter.

Chapter 3

Translation Validation of Code Motion
Transformations

3.1 Introduction

The objective of the current work is to develop a unified verification procedure for

code motion techniques, including code motions across loop, and control structure

modifications without taking any additional information from the compiler. It is im-

portant to note that although code optimized using verified compilers render verifica-

tion at a later stage (such as the one presented in this chapter) unnecessary, such com-

pilers rarely exist and often deal with input languages with considerable restrictions.

As a result, these compilers are not yet popular with the electronic design automa-

tion industry, thus necessitating behavioural verification as a post-synthesis process.

Moreover, often a verified compiler is built out of unverified code transformers; in such

cases, it is augmented with a proof-assistant to ensure the correctness of the applied

transformations in terms of equivalence between the input program and the program

obtained by these code transformers, such as [150]; the methodology presented in the

current chapter can be used to build such proof-assistants as well.

The chapter is organized as follows. In Section 3.2, the FSMD model and related

concepts are described. Section 3.3 illustrates the basic concepts of the symbolic value

propagation method with the help of an example. Some intricacies of the method –

detection of loop invariance of subexpressions and subsumption of conditions of ex-

29

30 Chapter 3 Translation Validation of Code Motion Transformations

ecution of the paths are also highlighted in this section. The correctness of symbolic

value propagation as a method of equivalence checking is given in Section 3.4. The

overall verification process is presented in Section 3.5 along with some illustrative

examples. Its correctness and complexity are formally treated in Section 3.6. Experi-

mental results are provided in Section 3.7. The chapter is concluded in Section 3.8.

3.2 The FSMD model and related concepts

A brief formal description of the FSMD model is given in this section; a detailed

description of FSMD models can be found in [95]. The FSMD model [58], used in

this work to model the initial behaviour and the transformed behaviour, is formally

defined as an ordered tuple 〈Q,q0, I,V,O,τ : Q× 2S → Q, h : Q× 2S → U〉, where

Q is the finite set of control states, q0 is the reset (initial) state, I is the set of input

variables, V is the set of storage variables, O is the set of output variables, τ is the

state transition function, S represents a set of status signals as relations between two

arithmetic expressions over the members of I and V , U represents a set of assignments

of expressions over inputs and storage variables to some storage or output variables

and h is the update function capturing the conditional updates of the output and storage

variables taking place in the transitions through the members of U .

A computation of an FSMD is a finite walk from the reset state back to itself with-

out having any intermediary occurrence of the reset state. The condition of execution

Rµ of a computation µ is a logical expression over the variables in I such that Rµ is

satisfied by the initial data state iff the computation µ is executed. The data transfor-

mation rµ of the computation µ is the tuple 〈sµ,θµ〉; the first member sµ represents the

values of the program variables in V in terms of the input variables I at the end of the

computation µ and the second member θµ represents the output list of the computation

µ. To determine the equivalence of arithmetic expressions under associative, commu-

tative, distributive transformations, expression simplification, constant folding, etc.,

we rely on the normalization technique presented in [141] which supports Booleans

and integers only and assumes that no overflow or underflow occurs. The method

in [150], in contrast, can handle floating point expressions as well since it treats LCM

to be a purely syntactical redundancy elimination transformation.

Definition 1 (Computation Equivalence). Two computations µ1 and µ2 are said to be

3.2 The FSMD model and related concepts 31

equivalent, denoted as µ1 ' µ2, iff Rµ1 ≡ Rµ2 and rµ1 = rµ2 .

Definition 2 (FSMD Containment). An FSMD M1 is said to be contained in an FSMD

M2, symbolically M1 v M2, if for any computation µ1 of M1 on some inputs, there

exists a computation µ2 of M2 on the same inputs such that µ1 ' µ2.

Definition 3 (FSMD Equivalence). Two FSMDs M1 and M2 are said to be computa-

tionally equivalent, if M1 vM2 and M2 vM1.

However, an FSMD may consist of indefinitely long computations because of pres-

ence of loops. So, the idea of directly comparing the computations of the FSMDs

exhaustively will not work in practice. Therefore, cut-points are introduced such that

each loop is cut in at least one cut-point thereby permitting an FSMD to be considered

as a combination of paths.

A path α in an FSMD model is a finite sequence of states where the first and the last

states are cut-points and there are no intermediary cut-points and any two consecutive

states in the sequence are in τ. The initial (start) and the final control states of a

path α are denoted as αs and α f , respectively. The condition of execution Rα of the

path α is a logical expression over the variables in V and the inputs I such that Rα

is satisfied by the (initial) data state of the path iff the path α is traversed. The data

transformation rα of the path α is the tuple 〈sα,θα〉; the first member sα is an ordered

tuple 〈ei〉 of algebraic expressions over the variables in V and the inputs in I such that

the expression ei represents the value of the variable vi after the execution of the path in

terms of the initial data state of the path; the second member θα, which represents the

output list along the path α, is typically of the form [OUT (Pi1 ,e1),OUT (Pi2 ,e2), . . .].

More specifically, for every expression e output to port P along the path α, there is a

member OUT (P,e) in the list appearing in the order in which the outputs occur in α.

The condition of execution and the data transformation of a path are computed using

the method of symbolic execution.

Definition 4 (Path Equivalence). Two paths α and β are said to be computationally

equivalent, denoted as α' β, iff Rα ≡ Rβ and rα = rβ.

It is worth noting that if two behaviors are to be computationally equivalent, then

their outputs must match. So, when some variable is output, its counterpart in the

other FSMD must attain the same value. In other words, equivalence of θα hinges

32 Chapter 3 Translation Validation of Code Motion Transformations

upon the equivalence of sα. Hence, the rest of the chapter focuses on computation of

sα; the computation of θα has deliberately been omitted for the sake of brevity.

Any computation µ of an FSMD M can be considered as a computation along

some concatenated path [α1α2α3...αk] of M such that, for 1 ≤ i < k, αi terminates in

the initial state of the path αi+1, the path α1 emanates from and the path αk terminates

in the reset state q0 of M; αi’s may not all be distinct. Hence, we have the following

definition.

Definition 5 (Path Cover of an FSMD). A finite set of paths P = {α1,α2,α3, . . . ,αk}
is said to be a path cover of an FSMD M if any computation µ of M can be expressed

as a concatenation of paths from P.

The set of all paths from a cut-point to another cut-point without having any in-

termediary cut-point is a path cover of the FSMD [56]. In course of establishing

equivalence of paths of a path cover, a natural correspondence between the control

states from the two FSMDs is also produced as defined below.

Definition 6 (Corresponding States). Let M1 = 〈Q1,q1,0, I,V1,O,τ1,h1〉 and M2 =

〈Q2,q2,0, I,V2,O, τ2,h2〉 be two FSMDs having identical input and output sets, I and

O, respectively.

1) The respective reset states q1,0 and q2,0 are corresponding states and a non-reset

state does not have correspondence with a reset state.

2) If q1,i ∈Q1 and q2, j ∈Q2 are corresponding states and there exist q1,k ∈Q1 and

q2,l ∈ Q2 such that, for some path α from q1,i to q1,k in M1, there exists a path

β from q2, j to q2,l in M2 such that α ' β, then q1,k and q2,l are corresponding

states (note that q1,k and q2,l must both be either reset states or non-reset states).

The following theorem can be concluded from the above discussion.

Theorem 1. An FSMD M1 is contained in another FSMD M2 (M1 v M2), if there

exists a finite path cover P1 = {α1,α2, . . . , αl1} of M1 for which there exists a set P2 =

{β1,β2, . . . ,βl2} of paths of M2 such that for any corresponding state pair 〈q1,i,q2, j〉,
for any path αm ∈ P1 emanating from q1,i, there exists a path βn ∈ P2 emanating from

q2, j such that αm ' βn.

3.2 The FSMD model and related concepts 33

Proof: We say that M1vM2, if for any computation µ1 of M1 on some inputs, there

exists a computation µ2 of M2 on the same inputs such that µ1 ' µ2 (Definition 2). Let

there exist a finite path cover P1 = {α1,α2, . . . , αl1} of M1. Corresponding to P1, let

a set P2 = {β1,β2, . . . ,βl2} of paths of M2 exist such that for any corresponding state

pair 〈q1,i,q2, j〉, for any path αm ∈ P1 emanating from q1,i, there exists a path βn ∈ P2

emanating from q2, j such that αm ' βn.

Since P1 is a path cover of M1, any computation µ1 of M1 can be looked upon as a

concatenated path [αi1αi2 . . .αit] from P1 starting from the reset state q1,0 and ending

again at this reset state of M1. Now, we have to show that a computation µ2 exists in

M2 such that µ1 ' µ2.

The reset states q1,0 of M1 and q2,0 of M2 must be corresponding states by clause

1 of Definition 6. Therefore, it follows from the hypothesis that a path β j1 exists

in P2 such that αi1 ' β j1; thus, the states α
f
i1 and β

f
j1 must again be corresponding

states by clause 2 in Definition 6. By repetitive application of the above argument,

it follows that that there exists a concatenated sequence of paths β j1 . . .β jt such that

αik ' β jk ,1 ≤ k ≤ t. What remains to be proved for [β j1β j2 . . .β jt] to be a computa-

tion of M2 is that β
f
jt = q2,0. Let β

f
jt 6= q2,0; now 〈α f

it ,β
f
jt 〉, i.e., 〈q1,0,β

f
jt 〉 must be a

corresponding state pair. However, by Definition 6, a non-reset state cannot have cor-

respondence with a reset state. Consequently, β
f
jt must be q2,0 and thus [β j1β j2 . . .β jt]

is a computation, µ2 say, and µ1 ' µ2. �

It is important to note that the choice of cut-points is non-unique and it is not guar-

anteed that a path cover of one FSMD obtained from any choice of cut-points in itself

will have the corresponding set of equivalent paths for the other FSMD. The follow-

ing example explains how one’s initial choice of cut-points may be revised by the path

extension based equivalence checking method [90, 95, 110], which uses Theorem 1 to

establish equivalence between two FSMDs.

Example 1. Figure 3.1(a) shows the source FSMD M1 and Figure 3.1(b) shows the

transformed FSMD M2. Both of these FSMDs compute the greatest common divi-

sor of two numbers. The states {q1,0,q1,1,q1,2,q1,3,q1,4,q1,5} for M1 and the states

{q2,0,q2,1} for M2 are initially chosen as the cut-points. We use the notation qi � q j

to represent a path from the state qi to the state q j. To distinguish between paths orig-

inating from the same state due to conditional branches, we write qi
c
−−� q j to denote

the path from qi to q j which is traversed when the condition c is satisfied. Note that

34 Chapter 3 Translation Validation of Code Motion Transformations

even(y2)/

!even(y2)/

even(y1)/−
!even(y2)/−

even(y2)/

y1⇐ y1/2

y2⇐ y2/2

y1⇐ y1/2,
y2⇐ y2/2

!(y1 = y2)/−

!even(y1)/−

!(y1 > y2)/

y1 > y2/y1⇐ y1− y2

y2⇐ y2− y1

res⇐ res∗2

−/OUT (yout,res)

q1,5

q1,4

q1,2

q1,1

q1,0

−/y1⇐ P1, y2⇐ P2, res⇐ 1

(a)

(b)

y1⇐ y1/2,
y2⇐ y2/2

!(y1 = y2) & !even(y1)& !even(y2)

−/y1⇐ P1, y2⇐ P2, res⇐ 1

!(y1 = y2) & even(y1)

res⇐ res∗2,

q2,2

!(y1 = y2) &

q2,1

y2⇐ y2/2

!(y1 = y2) & !even(y1)& !even(y2)
&y1 > y2/y1⇐ y1− y2

!(y1 = y2) & even(y1)
&!even(y2)/y1⇐ y1/2

−/yout⇐ res

y1 = y2/res⇐ res∗ y1

& even(y2) /

!even(y1) & even(y2) /

q2,0

q2,3

&!(y1 > y2)/y2⇐ y2− y1

−/OUT (yout,res)

y1 = y2/res⇐ res∗ y1

q1,6

q1,3

β2

β4

β5

β6

β7

β3

β1

α2

α3

α5α6

α7

α10

α11

α4

α8

α1

α9

Figure 3.1: (a) M1: Source FSMD. (b) M2: Transformed FSMD.

3.2 The FSMD model and related concepts 35

upon finding a mismatch between a pair of paths, the one with the weaker condition

of execution is extended. The algorithm reported in [95] proceeds in the following

sequence:

1) finds β1 as the equivalent path of α1;

2) finds β2 as the equivalent path of α2;

3) fails to find equivalent path of α3, hence, extends it; the extended paths are α3α4

and α3α5;

4) fails to find equivalent path of α3α4, hence, extends it; the extended paths are

α3α4α6 and α3α4α7;

5) fails to find equivalent path of α3α5, hence, extends it; the extended paths are

α3α5α8 and α3α5α9;

6) and 7) finds β4 and β3 as the respective equivalent paths of α3α4α6 and α3α4α7;

8) finds β6 as the equivalent path of α3α5α8;

9) fails to find equivalent path of α3α5α9, hence, extends it; the extended paths are

α3α5α9α10 and α3α5α9α11;

10) and 11) find β5 and β7 as the respective equivalent path of α3α5α9α10 and α3α5α9

α11.

Thus, the set of corresponding states for this example is {〈q1,0,q2,0〉,〈q1,1,q2,1〉}.
It follows from Theorem 1, M1vM2; on reversing the roles of M1 and M2, again it fol-

lows from Theorem 1, M2 vM1. Hence, we conclude that M1 and M2 are equivalent

from Definition 3. The respective path covers of the source and the transformed FS-

MDs such that there is a one-to-one correspondence between their members in terms

36 Chapter 3 Translation Validation of Code Motion Transformations

of path equivalence are as follows:

P1 = { q1,0 � q1,1,

q1,1
y1=y2
−−−−−� q1,0,

q1,1
!(y1=y2)
−−−−−−−� q1,2

even(y1)
−−−−−−� q1,3

even(y2)
−−−−−−� q1,1,

q1,1
!(y1=y2)
−−−−−−−� q1,2

even(y1)
−−−−−−� q1,3

!even(y2)
−−−−−−−� q1,1,

q1,1
!(y1=y2)
−−−−−−−� q1,2

!even(y1)
−−−−−−−� q1,4

even(y2)
−−−−−−� q1,1,

q1,1
!(y1=y2)
−−−−−−−� q1,2

!even(y1)
−−−−−−−� q1,4

!even(y2)
−−−−−−−� q1,5

y1>y2
−−−−−� q1,1,

q1,1
!(y1=y2)
−−−−−−−� q1,2

!even(y1)
−−−−−−−� q1,4

!even(y2)
−−−−−−−� q1,5

!(y1>y2)
−−−−−−−� q1,1 },

P2 = { q2,0 � q2,1,

q2,1
y1=y2
−−−−−� q2,0,

q2,1
!(y1=y2)&even(y1)&even(y2)
−−−−−−−−−−−−−−−−−−� q2,1,

q2,1
!(y1=y2)&even(y1)&!even(y2)
−−−−−−−−−−−−−−−−−−−� q2,1,

q2,1
!(y1=y2)&!even(y1)&even(y2)
−−−−−−−−−−−−−−−−−−−� q2,1,

q2,1
!(y1=y2)&!even(y1)&!even(y2)&y1>y2
−−−−−−−−−−−−−−−−−−−−−−−−� q2,1,

q2,1
!(y1=y2)&!even(y1)&!even(y2)&!(y1>y2)
−−−−−−−−−−−−−−−−−−−−−−−−−−� q2,1 }.

�

The path extension based approaches [90, 95, 110] do modify the initial set of path

covers to new sets (as illustrated through the above example) so that the resulting path

covers satisfy the property characterized in Theorem 1; they, however, cannot validate

code motions across loops. In the subsequent section, we devise a method whereby an

established path based approach is moulded suitably to verify such transformations.

In this work, a path cover is obtained by setting the reset state and the branching states

(i.e., states with more than one outward transition) of the FSMD as cut-points.

3.3 The method of symbolic value propagation 37

3.3 The method of symbolic value propagation

3.3.1 Basic concepts

The symbolic value propagation method consists in propagating values of variables

over the corresponding paths of the two FSMDs on discovery of mismatch in the val-

ues of some live variable; the mismatched values are marked to distinguish them from

the matched values. A variable v is said to be live at a state s if there is an execution

sequence starting at s along which its value may be used before v is redefined [10].

Propagation of values from a path α1 to the next path α2 is accomplished by asso-

ciating a propagated vector at the end state of the path α1 (or equivalently, the start

state of the path α2). A propagated vector ϑ through a path α1 is an ordered pair

of the form 〈C ,〈e1,e2, · · · ,ek〉〉, where k = |V1
⋃

V2|. The first element C of the pair

represents the condition that has to be satisfied at the start state of α1 to traverse the

path and reach its end state with the upgraded propagated vector. The second element,

referred to as value-vector, comprises of ei, 1≤ i≤ k, which represents the symbolic

value attained at the end state of α1 by the variable vi ∈ V1
⋃

V2. To start with, for

the reset state, the propagated vector is 〈>,〈v1,v2, · · · ,vk〉〉 (also represented as υ),

where > stands for true and ei = vi,1≤ i≤ k, indicates that the variables are yet to be

defined. For brevity, we represent the second component as v to mean 〈v1,v2, · · · ,vk〉
and as e to mean 〈e1,e2, · · · ,ek〉, where ei’s are the symbolic expressions (values) in-

volving variables vi,1 ≤ i ≤ k, in general. It is important to note that an uncommon

variable, i.e., a variable that is defined in either of the FSMDs but not both, from the

set V2−V1 (V1−V2) retains its symbolic value in the propagated vectors of M1 (M2)

throughout a computation of M1 (M2). Let Rα(v) and sα(v) represent respectively

the condition of execution and the data transformation of a path α when there is no

propagated vector at the start state αs of α. In the presence of a propagated vector,

ϑαs = 〈c1,e〉 say, at αs, its condition of execution becomes c1(v)∧Rα(v){e/v} and the

data transformation becomes sα(v){e/v}, where {e/v} is called a substitution; the ex-

pression κ{e/v} represents that each variable v j ∈ v that occurs in κ is replaced by the

corresponding expression e j ∈ e simultaneously with other variables. The propagated

vector ϑα associated with a path α : αs � α f will synonymously be referred to as

ϑα f associated with the final state α f of α. Also, we use the symbol ϑi, j to represent

a propagated vector corresponding to the state qi, j. We follow a similar convention

38 Chapter 3 Translation Validation of Code Motion Transformations

(of suffixing) for the members of the propagated vector, namely the condition and the

value-vector. The above discussion provides the foundation for comparing two paths,

and hence the following definition is in order.

Definition 7 (Equivalent paths for a pair of propagated vectors). A path α : q1,s � q1, f

of FSMD M1 with a propagated vector 〈Cα,v1,s〉 is said to be (unconditionally) equiv-

alent (denoted using') to a path β : q2,s � q2, f of FSMD M2 with a propagated vector

〈Cβ,v2,s〉 if Cα∧Rα(v1,s/v)≡ Cβ∧Rβ(v2,s/v) and sα(v1,s/v) = sβ(v2,s/v). Otherwise,

the path α with the above propagated vector is said to be conditionally equivalent (de-

noted using 'c) to the path β with the corresponding propagated vector if q1, f 6= q1,0,

the reset state of M1, q2, f 6= q2,0, the reset state of M2 and ∀α′ emanating from the

state q1, f with the propagated vector 〈Cα∧Rα(v1,s/v),sα(v1,s/v)〉, ∃β′ from q2, f with

the propagated vector 〈Cβ∧Rβ(v2,s/v),sβ(v2,s/v)〉, such that α′ ' β′ or α′ 'c β′.

In Definition 7, the conditions q1, f 6= q1,0 and q2, f 6= q2,0 prevent symbolic value

propagation beyond the reset states. It also implies that if α′ terminates in q1,0 such

that it has an equivalent path β′, then α′ ' β′ must hold; more specifically, paths

terminating in reset states cannot have any conditionally equivalent paths. To dis-

tinguish explicitly between conditionally equivalent paths and unconditionally equiv-

alent paths, the terms C-equivalent and U-equivalent are henceforth used. The final

states of two C-equivalent paths are called conditionally corresponding (C-corresponding)

states.

Example 2. Figure 3.2 illustrates the method of symbolic value propagation. Let the

variable ordering be 〈u,v, w,x,y,z〉. The states q1,0 and q2,0 are the reset states of the

FSMDs that are being checked for equivalence. The propagated vector correspond-

ing to each reset state is υ. The propagated vectors at the end states q1,1 and q2,1

of the paths α1 and β1 respectively are found to be ϑ1,1 = 〈>,〈u,v,w, f1(u,v),y,z〉〉
and ϑ2,1 = 〈>,〈u,v,w,x, f2(u), z〉〉, respectively. The variables u, v, w and z did not

have any propagated value at the beginning and have not changed their values along

the paths. The values of x and y are given in bold face to denote that they mismatch;

when the value of some variables is propagated in spite of a match (this is done to

resolve transformations such as copy propagation), they are given in normal face. The

mismatched values are demarcated because they require special treatment during anal-

ysis of code motion across loop, as explained shortly in Section 3.3.2. Next we use

the characteristics of the paths α2 and β2 to obtain the respective conditions of ex-

ecution and data transformations for these propagated vectors. Let Πn
i represent the

3.3 The method of symbolic value propagation 39

−/x⇐ f1(u,v)

¬p(x)/

q1,0

q1,1

q1,2

α3α2

α1

(a)

α5α4

z⇐ f3(v)
y⇐ f2(u),

p(x)/

z⇐ f5(w)
y⇐ f4(u,v),

p(f1(u,v))/
z⇐ f3(v),
x⇐ f1(u,v)

q2,0

q2,1

q2,2

−/y⇐ f2(u)β1

(b)

¬p(f1(u,v))/

β3

x⇐ f6(u,v,w),

z⇐ f5(w)

β2

Figure 3.2: An example of symbolic value propagation.

i-th projection function of arity n; we keep the arity understood when it is clear from

the context. For the path α2, note that the condition of execution Rα2 is p(x) and the

data transformation sα2 is {y⇐ f2(u),z⇐ f3(v)}. The modified condition of execu-

tion, R′α2
is calculated as Π1(ϑ1,1)∧Rα2(v){Π2(ϑ1,1)/v} ≡ >∧ p(x){ f1(u,v)/x} ≡

p(f1(u,v)) and the modified data transformation s′α2
as sα2(v){Π2(ϑ1,1)/v} = {x⇐

f1(u,v),y⇐ f2(u),z⇐ f3(v)}. The symbol s′α2

∣∣∣
x

represents the value correspond-

ing to the variable x as transformed after application of sα2 on the propagated vec-

tor Π2(ϑ1,1), i.e., f1(u,v). The characteristic tuple for path β2 comprises Rβ2(v) ≡
p(f1(u,v)) and sβ2(v) = {z⇐ f3(v),x⇐ f1(u,v)}. The condition R′

β2
of the path

β2 and the data transformation s′
β2

of the propagated vector are calculated similarly

as R′
β2
≡ Π1(ϑ2,1)∧Rβ2(v){Π2(ϑ2,1)/v} ≡ >∧ p(f1(u,v)) ≡ p(f1(u,v)) and s′

β2
=

sβ2(v){Π2(ϑ2,1)/v} = {x⇐ f1(u,v),y⇐ f2(u),z⇐ f3(v)}. We find that R′α2
≡ R′

β2

and s′α2
= s′

β2
. Since a match in the characteristic tuples of the respective paths implies

symbolic value propagation is no longer required in this case, there is no need to store

the vectors; the paths α2 and β2 are declared as U-equivalent.

For the paths α3 and β3, having the conditions of execution Rα3 ≡ ¬p(x) and

Rβ3 ≡ ¬p(f1(u,v)) respectively, the respective conditions R′α3
and R′

β3
with respect

to ϑαs
3

and ϑβs
3

are found to be ¬p(f1(u,v)). The data transformations are sα3 =

{y ⇐ f4(u,v),z ⇐ f5(w)} and sβ3 = {x ⇐ f6(u,v,w),z ⇐ f5(w)}. The respective

modified data transformations are s′α3
= {x⇐ f1(u,v),y⇐ f4(u,v),z⇐ f5(w)} and

40 Chapter 3 Translation Validation of Code Motion Transformations

Algorithm 1 valuePropagation (α, 〈Cαs,vαs〉, β, 〈Cβs,vβs〉)
Inputs: Two paths α and β, and two propagated vectors 〈Cαs ,vαs〉 at αs and 〈Cβs ,vβs〉 at βs.

Outputs: Propagated vector 〈Cα f ,vα f 〉 for α f and propagated vector 〈Cβ f ,vβ f 〉 for β f .

1: Cα f ← Cαs ∧Rα(v){vαs/v}; Cβ f ← Cβs ∧Rβ(v){vβs/v}.
2: if ∃ variable vi ∈ (V1

⋃
V2) which is live at α f or β f

and sα(v){vαs/v}
∣∣∣
vi
6= sβ(v){vβs/v}

∣∣∣
vi

then

3: ∀ v j ∈ (V1
⋃

V2), Π j(vα f)← sα(v){vαs/v}
∣∣∣
v j

.

4: ∀ v j ∈ (V1
⋃

V2), Π j(vβ f)← sβ(v){vβs/v}
∣∣∣
v j

.

5: Mark each variable, x say, which exhibits mismatch at α f and β f , and also mark all

those variables on which x depends.

6: end if

7: return 〈〈Cα f ,vα f 〉,〈Cβ f ,vβ f 〉〉.

s′
β3

= {x⇐ f6(u,v,w),y⇐ f2(u),z⇐ f5(w)}. There is a mismatch between s′α3
and

s′
β3

for the values of x and y; hence the propagated vectors that are stored at q1,2

and q2,2 (via α3 and β3) are ϑ1,2 = 〈¬p(f1(u,v)),〈u,v,w, f1(u,v), f4(u,v), f5(w)〉〉 and

ϑ2,2 = 〈¬p(f1(u,v)),〈u,v,w, f6(u,v,w), f2(u), f5(w)〉〉 respectively. In this example,

the propagated vectors ϑ1,1 at q1,1 and ϑ2,1 at q2,1 got identically transformed over

paths α2 and β2, respectively. Had they not matched we would have to store the corre-

sponding propagated vectors along these paths also. This indicates that we may have

to store more than one propagated vector in any state. This, however, will not be the

case. Owing to the depth-first traversal approach achieved through recursive invoca-

tions, it is sufficient to work with a single propagated vector at a time for each state.

Suppose we first reach the state q1,2 via the path α2 with the mismatched propagated

vector ϑ
α

f
2
. Only after the U-equivalent or C-equivalent of each of the paths α4 and

α5 emanating from q1,2 using ϑ
α

f
2

are found, does the procedure again visit the state

q1,2 corresponding to α3. Finally, when α3 is accounted for, we store simply ϑ
α

f
3

in

q1,2. �

It has been stated above that only the values of those live variables which ex-

hibit mismatch are marked in the propagated vectors; however, those variables on

which these mismatched variables depend need to be marked as well to detect valid

code motion across loop as borne out by the example in Section 3.3.2. The func-

tion valuePropagation (Algorithm 1) formalizes the above steps of computation of the

propagated vectors in case of a mismatch.

3.3 The method of symbolic value propagation 41

Using symbolic value propagation as a pivotal concept, we need to formalize our

main task of equivalence checking of two given FSMDs. However, certain intricacies

are interlaced with symbolic value propagation which need to be resolved first. The

following subsections illustrate these intricacies and furnishes the mechanisms for

addressing them. The overall verification method is then presented in a subsequent

section.

3.3.2 Need for detecting loop invariance of subexpressions

In order to verify behaviours in the presence of code motions beyond loops, one needs

to ascertain whether certain subexpressions remain invariants in a loop or not. Ba-

sically, suppose some variable, w say, gets defined before a loop L in the original

behaviour, and somehow it can be confirmed that the value of w remains invariant

in that loop. Now, if an equivalent definition for w is found in the other behaviour

after exiting the loop L′ (which corresponds to L), then such behaviours will indeed

be equivalent. In this work, we target to establish the loop invariance of propagated

vectors which, in turn, suffices to prove the loop invariance of the involved variables.

The following example is used to reveal these facts more vividly.

q1,2

−/i⇐ 1,y⇐ t1− t2

¬i < N/−

q1,0

〈T,〈x,y,1,N, t1, t2, t1+ t2〉〉

q2,0

q2,2

¬i < N/y⇐ t1− t2

−/i⇐ 1,h⇐ t1+ t2,

(a) M1 (b) M2

〈T,〈x, t1− t2, i,N, t1, t2, t1+ t2〉〉

〈T,〈x,y, i,N, t1, t2,h〉〉〈T,〈x,y, i,N, t1, t2,h〉〉

q1,1 q2,1

〈T,〈x, t1− t2, i,N, t1, t2,h〉〉

〈T,〈x, t1− t2,1,N, t1, t2,h〉〉

i < N/
x⇐ t1+ t2+ x∗ i,
i⇐ i+1

i < N/

i⇐ i+1
x⇐ h0 + x∗ i,

Figure 3.3: An example of propagation of values across loop.

Example 3. In Figure 3.3, the operation y⇐ t1− t2, which is originally placed before

the loop body in M1 (Figure 3.3(a)), is moved after the loop in the transformed FSMD

M2 (Figure 3.3(b)). This transformation reduces the register lifetime for y. In addition,

the subexpression t1+ t2, which is originally computed in every iteration of the loop,

is now computed only once before the start of the loop and the result is stored in an

42 Chapter 3 Translation Validation of Code Motion Transformations

uncommon variable h which, in turn, is used in every loop iteration. These two trans-

formations are possible because the variables t1, t2 are not updated and y is neither

used nor updated within the loop body.

Now consider the equivalence checking between these two behaviours. The path

q1,0 � q1,1 of M1 is said to be candidate C-equivalent to the path q2,0 � q2,1 of M2

since the values of y and h mismatch. Accordingly, we have the propagated value

t1− t2 for y at q1,1 and t1+ t2 for h at q2,1. Now, the path q1,1 � q1,1 (which rep-

resents a loop) is declared to be candidate C-equivalent of q2,1 � q2,1 with the prop-

agated values of h and y. The variables y and h are not updated in either of the loop

bodies; nor are the variables t1, t2 participating in the expression values t1− t2 and

t1+ t2 of y and h, respectively. Hence, we have the same propagated values at q1,1

and q2,1 after executing the loops indicating that code motion across loop may have

taken place. Since h is an uncommon variable (in V2−V1), its value can never match

over the two FSMDs. Therefore, if a definition of the common variable y is detected

after the loop in M2 which renders the values of y in the two FSMDs equivalent, then

such code motions across the loop would indeed be valid. In the current example, this

occurs in the path q2,1 � q2,2 and hence finally, q1,1 � q1,2 and q2,1 � q2,2 are desig-

nated as U-equivalent paths with matches in all the variables except in the uncommon

variable, and the previously declared candidate C-equivalent path pairs are asserted to

be actually C-equivalent. �

The above example highlights the intricacy involved in verification of code mo-

tions across loops, that is, detection of loop invariant subexpressions. Example 3

exhibits only simple loops. However, a loop may comprise of several paths because

of branchings contained in a loop. The conventional approach of using back edges1

to detect loops has been used in [21]. This approach however fails in the presence of

dynamic loop scheduling (DLS) [135]. In Section 3.5.2, an example of DLS is pre-

sented and its equivalence is established by our verification procedure with the help of

a different loop detection mechanism as described below.

To identify loops, a LIST of (candidate) C-equivalent pairs of paths is maintained.

Initially, the LIST is empty. Whenever a pair of (candidate) C-equivalent paths is

detected, they are added to the LIST . Thus, if a path occurs in the LIST , then it

indicates that the final state of the path has an associated propagated vector with some
1A back edge (u,v) connects u to an ancestor v in a depth-first tree of a directed graph [42].

3.3 The method of symbolic value propagation 43

unresolved mismatch(es). If at any point of symbolic value propagation, a path with

the start state q is encountered which is also the final state of some path appearing in

LIST , it means that a loop has been encountered with the mismatch that was identified

during the last visit of q (stored as a propagated vector) not yet resolved2. Once pairs

of U-equivalent paths are subsequently detected for every path emanating from the

states α f and β f of a candidate C-equivalent path pair 〈α,β〉 present in the LIST , the

paths α and β are declared as actually C-equivalent (by Definition 7).

If a loop is crossed over with some mismatches persisting, it means that the last

constituent path of the loop is not yet U-equivalent. Let q be both the entry and exit

state of such a loop; the propagated vector already stored at q (during entry) and the

one computed after traversal of the final path of the loop in M leading to q need to

be compared. This is explained with the help of Example 3. Let us first consider a

variable, such as y in the example, whose values mismatched while entering the loop.

Now, if this variable had got updated within the loop, then surely it was not an in-

variant in the loop, a fact which would have easily been detected by the presence of a

mismatch for y between the initial and the final vectors of q1,1 � q1,1 or q2,1 � q2,1.

Secondly, consider those variables on which the mismatched variables depend such

as, t1 and t2. If any of them were to get modified within the loop (even if identically

for both the FSMDs), then moving the operation y⇐ t1− t2 from the path q1,0 � q1,1

in M1 to the path q2,1 � q2,2 in M2 would not have been a valid case of code motion

across loop. Such modifications (in t1 or t2) also get detected by comparing the vec-

tors since we mark the value of those variables as well on which some mismatched

variable depends (as was mentioned in Section 3.3) in the propagated vector. Lastly,

all other variables should get defined identically in the two loops for their data trans-

formations to match. If any difference in the value of some marked variable between

entry and exit to a loop is detected, then we can ascertain that this variable is not an

invariant in the loop. It further implies that the code motion across the loop need not

be valid. Since it cannot be determined statically how many times a loop will iterate

before exiting, it is not possible to determine what values will the unmarked variables

take when a loop iterates. Moreover, the unmarked variables also do not participate in

code motion across loop, hence they are reverted to their symbolic values at the exit of

a loop. For example, the variable i in both the FSMDs of Figure 3.3 has the respective

2While treating the example in Section 3.5.2, we underline a situation where the loop detection

mechanism based on back edge fails and the above method succeeds.

44 Chapter 3 Translation Validation of Code Motion Transformations

values 1 and 2 during the entry and the exit of the loop. However, before the paths

q1,1 � q1,2 and q2,1 � q2,2 are compared, the value of i is set to its symbolic value “i”

(instead of 2) in the propagated vectors computed at q1,1 and q2,1 after the respective

loops are exited. The function loopInvariant (Algorithm 2) accomplishes these tasks.

Algorithm 2 loopInvariant (γ, ϑ′
γ f , ϑγ f , ϑ′

ς f)

Inputs: A path γ, a propagated vector ϑ′
γ f which is computed after γ, the propagated vector

ϑγ f stored in the cut-point γ f , which is the entry/exit state of a loop, and the propagated vector

ϑ′
ς f where ς is the C-corresponding path of γ.

Outputs: A Boolean value.

1: if ∃ a marked variable x, ϑ′
γ f

∣∣∣
x
6= ϑγ f

∣∣∣
x

then

2: return false.

3: else if ∃ an unmarked variable x, ϑ′
γ f

∣∣∣
x
6= ϑ′

ς f

∣∣∣
x

then

4: return false.

5: end if

6: Set each unmarked variable x to its symbolic value “x”.

7: return true.

3.3.3 Subsumption of conditions of execution of the paths being

compared

It is worth noting that the examples demonstrated in Figure 3.2 and Figure 3.3 illustrate

the case Rα ≡ Rβ. Another intricacy arises when the condition Rα 6≡ Rβ but Rα⇒ Rβ

or Rβ ⇒ Rα is encountered. Specifically, to handle this situation, the notion of null

path is introduced in an FSMD, to force symbolic value propagation along the path in

the other FSMD. A null path (of length 0) from any state q to the same state q has the

condition of execution > and a null (identity) data transformation. We refer to a null

path emanating from a state q as ϖq having the start state ϖs
q same as the final state

ϖ
f
q = q. The example given below elucidates on how to handle these cases.

Example 4. In Figure 3.4, let the states q1,r and q2,k be the corresponding states

and the variable ordering be 〈u,v,w,x,y〉. When we search for a path starting from

q2,k that is C-equivalent to α1, we find Rα1 ⇒ Rβ1 (i.e. c ⇒ >). The path β1 is

compared with ϖq1,r ; in the process, the vector propagated to q2,l becomes ϑ2,l =

〈>,〈u,v,w, f(u,v),y〉〉 (and ϖq1,r is held C-equivalent to β1). For the path β2, Rβ2 ≡ c

3.3 The method of symbolic value propagation 45

α1

y⇐ h(u,v,w)

α2

q1,r

q1,t

β1

q2,k

q2,l

q2,m

¬c/y⇐ h(u,v,w)
β3β2

−/x⇐ f (u,v)

(a) M1 (b) M2

¬c/x⇐ f (u,v), c/y⇐ g(w)c/x⇐ f (u,v),
y⇐ g(w)

Figure 3.4: An example to illustrate the cases Rα⇒ Rβ and Rβ⇒ Rα.

and sβ2 = {y⇐ g(w)}. Based on ϑ2,l , the path characteristics are then calculated to be

R′
β2
≡ c and s′

β2
= {x⇐ f (u,v),y⇐ g(w)} which are equivalent to that of α1. Analo-

gously, the path characteristics of α2 and β3 (with ϑ2,l) are found to be equivalent.

When we have to show the converse, i.e., M2 vM1, we are required to find a path

in M1 that is equivalent to β1. We find two paths α1 and α2 such that Rα1 ⇒ Rβ1

(i.e. c⇒ >) and also Rα2 ⇒ Rβ1 (i.e. ¬c⇒ >). The vector ϑ2,l (same as above)

is propagated to q2,l after comparing β1 with ϖq1,r . Then we recursively try to find

the paths equivalent to β2 and β3, thereby obtaining the set of C-equivalent paths:

{〈β1,ϖq1,r〉} and the set of U-equivalent paths: {〈β2,α1〉,〈β3,α2〉}. �

To summarize, therefore, of the paths α and β, the one having a stronger condition

will have a null path introduced at its initial state to force symbolic value propagation

along the other path. The function findEquivalentPath (Algorithm 3) seeks to find a

pair of U-equivalent or C-equivalent paths depending on how the conditions of execu-

tion of the paths being compared are related to each other. The propagated vectors for

the end states of these paths also get updated accordingly.

Specifically, the function findEquivalentPath takes as inputs a path α of the FSMD

M1, a propagated vector ϑαs , a state q2, j of the FSMD M2, which has correspondence

with the state αs, a propagated vector ϑβs at q2, j, and the path covers P1 and P2 of the

FSMDs M1 and M2, respectively. The function’s objective is to find a U-equivalent or

C-equivalent path for α (with respect to ϑαs) in P2 emanating from q2, j. For the paths

in P2 emanating from q2, j, the characteristic tuples are computed with respect to ϑβs .

It returns a 4-tuple 〈αm,β,ϑ
α

f
m
,ϑβ f 〉, which is defined depending upon the following

46 Chapter 3 Translation Validation of Code Motion Transformations

cases. In all the cases, αm is a path in P1, β is a path in P2, ϑ
α

f
m

is the propagated vector

at the end state α
f
m of αm, and ϑβ f is the propagated vector at the end state β f of β. In

the algorithm, the symbols R′α and R′
β

denote respectively the condition of execution

of the path α with respect to ϑαs and that of the path β with respect to ϑβs; likewise

for s′α and s′
β
. We have the following cases:

Case 1 (R′α ≡ R′
β
): A path β in P2 is found such that R′

β
≡ R′α — under this situation,

we have the following two subcases:

Case 1.1 (s′α = s′
β
): Return 〈α,β,υ,υ〉.

Case 1.2 (s′α 6= s′
β
): Return 〈α,β,ϑα f ,ϑβ f 〉. The propagated vectors are com-

puted by valuePropagation(α, ϑαs , β, ϑβs).

Case 2 (R′α⇒ R′
β
): Return 〈ϖαs,β,ϑϖαs ,ϑβ f 〉. The null path ϖαs originating (and ter-

minating) in the start state of α is returned as αm along with β and the propa-

gated vectors computed by valuePropagation invoked with the same parameters

as above. Note that ϑϖαs = ϑαs .

Case 3 (R′
β
⇒ R′α): Return 〈α,ϖq2, j ,ϑα f ,ϑϖq2, j

〉.

Case 4 (R′α 6≡ R′
β

and R′α 6⇒ R′
β

and R′
β
6⇒ R′α): Return 〈α,Ω,υ,υ〉. No path in P2 can

be found whose condition of execution is equal to or stronger/weaker than that

of α; then findEquivalentPath returns a non-existent path Ω in place of β. In this

case, the other three values in the 4-tuple are not of any significance.

3.4 Correctness of symbolic value propagation as a method

of equivalence checking

Theorem 2 (Correctness of the approach). An FSMD M1 with no unreachable state3

is contained in another FSMD M2 (M1 vM2), if

for a finite path cover P1 = {α1, . . . ,αl1} of M1, there exists a path cover P2 = {β1, . . . ,βl2}
of M2, such that

3For taking care of useless paths, it suffices to check whether or not some cut-point is reachable

from the reset state or not (using dfs or bfs).

3.4 Correctness of symbolic value propagation as a method of equivalence checking47

Algorithm 3 findEquivalentPath (α, ϑαs , q2, j, ϑβs , P1, P2)

Inputs: A path α ∈ P1, the propagated vector at its start state ϑαs , a state q2, j ∈M2 which is

the C-corresponding or U-corresponding state of αs, the propagated vector ϑβs associated with

q2, j, and a path cover P1 of M1, a path cover P2 of M2.

Outputs: Let αm = α or ϖαs . An ordered tuple 〈αm,β,ϑα
f
m
,ϑβ f 〉 such that αm and β are either

U-equivalent or C-equivalent, and ϑ
α

f
m

and ϑβ f are the vectors that are to be propagated to α
f
m

and β f respectively.

1: Let R′α = Rα(Π2(ϑαs)/v) and s′α = sα(Π2(ϑαs)/v).

2: for each path β ∈ P2 originating from q2, j do

3: Let R′
β
= Rβ(Π2(ϑβs)/v) and s′

β
= sβ(Π2(ϑβs)/v).

4: if R′α ≡ R′
β

then

5: if s′α = s′
β

then

6: return 〈α,β,υ,υ〉. Case 1.1

7: else

8: 〈ϑα f ,ϑβ f 〉 ← valuePropagation (α, ϑαs , β, ϑβs). Case 1.2

9: return 〈α,β,ϑα f ,ϑβ f 〉.
10: end if

11: else if R′α⇒ R′
β

then

12: 〈ϑϖαs ,ϑβ f 〉 ← valuePropagation (ϖαs , ϑαs , β, ϑβs). Case 2

13: return 〈ϖαs ,β,ϑϖαs ,ϑβ f 〉.
14: else if R′

β
⇒ R′α then

15: 〈ϑα f ,ϑϖq2, j
〉 ← valuePropagation (α, ϑαs , ϖq2, j , ϑβs). Case 3

16: return 〈α,ϖq2, j ,ϑα f ,ϑϖq2, j
〉.

17: end if

18: end for

19: return 〈α,Ω,υ,υ〉. Case 4

48 Chapter 3 Translation Validation of Code Motion Transformations

1. each path of P1 is either conditionally or unconditionally equivalent to some

path of P2 satisfying the correspondence relation of the respective start states

and final states of the paths; thus, symbolically, ∀i,1≤ i≤ l1,

1.1 αi ' β j or αi 'c β j, and 〈αs
i ,β

s
j〉 belongs to the set of corresponding (C-

corresponding) state pairs, for some j,1≤ j ≤ l2, or

1.2 αi'c ϖ, a null path of M2, and 〈αs
i ,ϖ

s〉 belongs to the set of corresponding

(C-corresponding) state pairs; and

2. all paths of P1 leading to the reset state will have unconditionally equivalent

paths in P2 leading to the reset state of M2; thus, symbolically, ∀αk1 ∈ P1 such

that α
f
k1

is the reset state q1,0 of M1, ∃βk2 ∈ P2 such that β
f
k2

is the reset state

q2,0 of M2, and αk1 ' βk2 .

Proof: A path α2 is said to be consecutive to α1 if α
f
1 =αs

2. Since P1 is a path cover

of M1, a computation µ1 of M1 can be viewed as a concatenation of consecutive paths

starting and ending at the reset state of M1; symbolically, µ1 = [αi1 ,αi2, . . . ,αin], where

αi j ∈ P1,1≤ j≤ n, and αs
i1 = α

f
in = q1,0. From the hypotheses 1 and 2 of the theorem,

it follows that there exists a sequence S of paths [βk1,βk2, . . . ,βkn], where βk j ∈ P2 or is

a null path of M2, 1≤ j < n, and βkn ∈ P2, such that αil ' βkl or αil 'c βkl ,1≤ l < n

and αin ' βkn . For S to represent a computation of M2, it must be a concatenation

of consecutive paths in M2 starting from the reset state q2,0 back to itself, which may

not be the case because β
f
k j
6= βs

k j+1
is possible when the path joining β

f
k j

and βs
k j+1

is

C-equivalent to a null path in M1 (and hence is not present in S). Introduction of null

paths at appropriate places does not alter the computation µ1 since null paths have con-

ditions of execution true and null data transformations (by definition) and preserves

consecutiveness property. Let µ′1 be a sequence obtained from µ1 by introducing such

null paths at the appropriate places which have C-corresponding paths in M2. The

sequence yields a computation equivalent to µ1. The sequence S′ of paths of M2 cor-

responding to µ′1 can be obtained by introducing at appropriate places in S the paths of

M2 which are C-corresponding to the null paths of M1 introduced in µ1 to obtain µ′1.

This new sequence S′ now indeed represents a concatenated path that starts and ends

at the reset state q2,0. Furthermore, hypothesis 2 of the theorem implies that whatever

mismatches might be present in the respective last but one paths in µ′1 and S′, they

must get resolved when the respective last paths back to the reset states are traversed.

Let µ2 be the computation of M2 represented by sequence S′. Thus, the computations

3.5 The overall verification method 49

µ2 and µ′1, and hence µ1, must be equivalent. �

3.5 The overall verification method

To begin with the procedure of equivalence checking, we have to identify the cut-

points in an FSMD followed by identification of paths and their corresponding char-

acteristics involving the conditions and the data transformations. We also need to

store the pairs of corresponding states in a structure, δ say, and the U-equivalent and

the C-equivalent pairs of paths in Eu and Ec, respectively.

The function containmentChecker (Algorithm 4) initializes all the above men-

tioned data structures, invokes correspondenceChecker (Algorithm 5) with the mem-

bers of the set δ of the corresponding state pairs one by one to check whether for

every path emanating from a state in the pair, there is a U-equivalent or C-equivalent

path from the other member of the pair; depending on the result returned by corre-

spondenceChecker, it outputs the decision whether the original FSMD is contained

in the transformed FSMD or not. A list, called LIST , is maintained to keep track of

the (candidate) C-equivalent pairs of paths visited along the chain of recursive invoca-

tions of correspondenceChecker invoked by containmentChecker. In case the equiva-

lence checking procedure fails for a chain of paths, this LIST is output as a possible

counterexample. Hence, note that every time correspondenceChecker is called from

containmentChecker, the former’s last parameter LIST is set to empty.

The verification procedure starts with the two reset states declared as correspond-

ing states and also ends with the reset states as a corresponding state pair in case the

two FSMDs are indeed equivalent. Otherwise, it terminates on encountering any of

the following “failure” conditions: (i) given a path in one FSMD, it fails to discover its

U-equivalent or C-equivalent path in the other one; (ii) it discovers that a propagated

vector depicting some mismatches at a loop state is not a loop invariant and some of

them do not get resolved in the loop. Note that while failure to find a U-equivalent

path occurs in one step, failure to find a C-equivalent path may be detected only when

the reset state is reached through several steps without finding a match in the variable

values. A chain of C-equivalence may be obtained in the form α1 'c β1 if α2 'c if

α3 'c β3, . . . , if αk ' βk, where α
f
k and β

f
k are the reset states; when αk ' βk is identi-

50 Chapter 3 Translation Validation of Code Motion Transformations

Algorithm 4 containmentChecker (M1, M2)
Inputs: Two FSMDs M1 and M2.

Outputs: Whether M1 is contained in M2 or not, P1, P2: path covers of M1 and M2 respectively,

δ: the set of corresponding state pairs, Eu: ordered pairs 〈α,β〉 of paths such that α ∈ P1 and

β ∈ P2, and α' β, Ec: ordered pairs 〈α,β〉 of paths such that α ∈ P1 and β ∈ P2, and α'c β.

1: Incorporate cut-points in M1 and M2; Let P1 (P2) be the set of all paths of M1 (M2) from

a cut-point to a cut-point having no intermediary cut-point, with each path having its

condition of execution R, data transformation s, and output list θ computed.

2: Let δ be {〈q1,0,q2,0〉}, and Eu and Ec be empty.

3: for each member 〈q1,i,q2, j〉 of δ do

4: if correspondenceChecker (q1,i, q2, j, P1, P2, δ, Eu, Ec, LIST =Φ) returns “failure” then

5: Report “May be M1 6vM2” and (exit).

6: end if

7: end for

8: Report “M1 vM2”.

fied, the path pair 〈αk,βk〉 is to be put in Eu and the pairs 〈αi,βi〉,1≤ i≤ k−1, in Ec

(after carrying out some further checks). Whereas, αk 6' βk would result in a failure

in the equivalence checking procedure, and the chain, kept track of by LIST , is output

as a possible counterexample.

The central function is correspondenceChecker given in Algorithm 5. It takes as

inputs two states q1,i and q2, j belonging to the FSMDs M1 and M2 respectively, and are

in correspondence to each other; the path covers P1 and P2, the set of corresponding

state pairs δ, the set of U-equivalent path pairs Eu, the set of C-equivalent path pairs Ec,

and the LIST . It returns “success” if for every path emanating from q1,i, an equivalent

path originating from q2, j is found; otherwise it returns “failure”. The behaviour of

the function is as follows. Dynamically, for any path α originating from the state

q1,i of the original FSMD M1, it invokes the function findEquivalentPath to find a

U-equivalent or C-equivalent path β originating from q2, j of the transformed FSMD

M2, where 〈q1,i,q2, j〉 is a corresponding or C-corresponding state pair. Recall that

the function findEquivalentPath returns a 4-tuple 〈αm,β,ϑ
α

f
m
,ϑβ f 〉 depending on the

following cases: (i) if it fails to find a path β such that α' β or α'c β, then it returns

β = Ω, where Ω represents a non-existent path, causing correspondenceChecker to

return “failure” as shown in its step 5; (ii) if it finds a path β such that Rα ≡ Rβ

or Rβ⇒ Rα, then αm is α itself; and (iii) if it finds a path β such that Rα⇒ Rβ and

3.5 The overall verification method 51

Rα 6≡ Rβ, then αm is returned as a null path from q1,i. In the last two cases, the function

correspondenceChecker next examines whether the propagated vectors ϑ
α

f
m

and ϑβ f

computed after αm and β are equal or not.

ϑ
α

f
m
6= ϑβ f : Unequal propagated vectors imply that U-equivalence could not be

established, and hence further symbolic value propagation is required. However, the

following checks are carried out first.

Loop-invariance: Whether a loop has been crossed over is checked in step 7, and if so,

a check for loop invariance of the propagated vectors ϑ
α

f
m

and ϑβ f is carried out with

the aid of the function loopInvariant. In case a failure in loop invariance is detected

for either of the propagated vectors, correspondenceChecker returns “failure”.

Extendability: Next, checks are made to ensure that neither of the end states α
f
m and β f

is a reset state. Since a computation does not extend beyond the reset state, reaching a

reset state with C-equivalence (and not U-equivalence) results in returning failure by

the correspondenceChecker as shown in step 10.

If ϑ
α

f
m
6= ϑβ f and both the checks for loop invariance and end states being a reset state

resolve in success, then 〈αm,β〉 is appended to LIST , and correspondenceChecker

calls itself recursively with the arguments α
f
m and β f (step 14) to continue searching

for equivalent paths.

ϑ
α

f
m
=ϑβ f : Attainment of equal propagated vectors signify discovery of U-equivalent

paths. Consequently, the data structures δ and Eu get updated. Notice that these steps

are executed only after the recursive calls to correspondenceChecker terminate, i.e.,

a U-equivalent pair has been found. It is to be noted that a state pair qualifies to be

a member of δ if the propagated vectors computed for these states match totally, i.e.,

when ϑ
α

f
m
= ϑβ f .

When the control reaches step 22 of correspondenceChecker, it implies that for every

chain of paths that emanates from the state q1,i, there exists a corresponding chain

of paths emanating from q2, j such that their final paths are U-equivalent. Note that

q1,i and q2, j are the respective final states of the last member of LIST . Hence, the

last member of LIST gets added to the set Ec in accordance with Definition 7 and is

removed from LIST . The remaining (preceding) members are yet to be declared C-

equivalent because all the paths emanating from the final state of the last path of the

52 Chapter 3 Translation Validation of Code Motion Transformations

containmentChecker

valuePropagation

correspondenceChecker

loopInvariantfindEquivalentPath

Figure 3.5: Call graph of the proposed verification method.

updated LIST have not yet been examined. The members of LIST are also displayed

as a part of the report generated whenever one of the “failure” conditions mentioned

above is encountered to aid in the process of debugging.

A call graph of the proposed verification method is given in Figure 3.5. The cor-

rectness and the complexity of the method have been treated in Section 3.6.

3.5.1 An illustrative example

In this section, the working of our verification procedure is explained with the exam-

ple given in Figure 3.6. Figure 3.6(a) and Figure 3.6(b) show two FSMDs before

and after scheduling. The definition of a in Figure 3.6(a) occurs before the loop

(q1,1 → q1,2 → q1,1), whereas in Figure 3.6(b), it has been moved after the loop

(q2,1 → q2,2 → q2,1) – an instance of code motion across loop. Such code motions

reduce register life times (as in this case) and may also minimize the overall register

usage. Moreover, the definition of z has been moved from both the (true and false)

branches to the predecessor block which is an instance of boosting up – a uniform code

motion technique, and the definition of g has been moved from one of the branches

to the predecessor block which is an instance of speculation – a non-uniform code

motion technique.

Example 5. The example given in Figure 3.6(a) represents the original behaviour

M1 and Figure 3.6(b) represents its transformed behaviour M2. The following steps

summarize the progress of the verification method. To begin with, q1,0 and q2,0 are

3.5 The overall verification method 53

Algorithm 5 correspondenceChecker (q1,i, q2, j, P1, P2, δ, Eu, Ec, LIST)
Inputs: Two states q1,i ∈ M1 and q2, j ∈ M2, two path covers P1 of M1 and P2 of M2, δ:

the set of corresponding state pairs, Eu and Ec for storing the pairs of U-equivalent and C-

equivalent paths, respectively, and LIST : a list of paths maintained to keep track of candidate

C-equivalent paths.

Outputs: Returns “success” if for every path emanating from q1,i there is an equivalent path

originating from q2, j in M2, otherwise returns “failure”. Also updates δ, Eu, Ec and LIST .

1: for each path α ∈ P1 emanating from q1,i do

2: if Π1(ϑ0,i)∧Rα(v){Π2(ϑ0,i)/v} 6≡ false then

3: 〈αm,β,ϑ
′
α

f
m
,ϑ′

β f 〉 ← findEquivalentPath (α, ϑ0,i, q2, j, ϑ1, j, P1, P2).

4: if β = Ω then

5: Report “equivalent path of α may not be present in M2,”

display LIST and return (failure).

6: else if ϑ
α

f
m
6= ϑβ f /* satisfied by cases 1.2, 2, 3 of Algorithm 3 */ then

7: if (α f
m appears as the final state of some path already in LIST ∧

!loopInvariant (αm, ϑ′
α

f
m
, ϑ

α
f
m
, ϑ′

β f)) ∨
(β f appears as the final state of some path already in LIST ∧
!loopInvariant (β, ϑ′

β f , ϑβ f , ϑ′
α

f
m
)) then

8: Report “propagated values are not loop invariant,”

display LIST and return (failure).

9: else if α
f
m = q1,0 ∨ β f = q2,0 then

10: Report “reset states reached with unresolved mismatch,”

display LIST and return (failure).

11: else

12: ϑ
α

f
m
← ϑ′

α
f
m
; ϑβ f ← ϑ′

β f . /* candidate C-equivalence */

13: Append 〈αm,β〉 to LIST .

14: return correspondenceChecker (α f
m, β f , P1, P2, δ, Eu, Ec, LIST).

15: end if /* loopInvariant */

16: else

17: Eu← Eu
⋃
{〈αm,β〉}. /* U-equivalence */

18: δ← δ
⋃
{〈α f

m,β
f
m〉}. /* αm = α in this case */

19: end if /* β = Ω */

20: end if

21: end for

22: Ec← Ec
⋃
{last member of LIST}.

23: LIST ← LIST − {last member of LIST}.
24: return (success).

54 Chapter 3 Translation Validation of Code Motion Transformations

−/a⇐ b+ c,

¬(b > c)/

c⇐ m+d

z⇐ x+ y
x < y/

z⇐ x+ y
¬(x < y)/

¬(k < N)/

m⇐ a+ s−/k⇐ k+1

k⇐ 1,
s⇐ 0

−/ f ⇐ z+ c

b > c/

s⇐ s+ k
k < N/

−/ f ⇐ z− c

g⇐ g+10

(a) M1

q1,0

q1,1

q1,3

q1,5

q1,8

q1,4

q1,2

q1,7q1,6

−/c⇐ m−g

−/OUT (P, f)

¬(k < N)/

a⇐ b+ c−/k⇐ k+1

s⇐ 0

s⇐ s+ k
k < N/

q2,0

q2,1q2,2

−/m⇐ a+ s,

q2,3

q2,4

−/k⇐ 1,

q2,5

c⇐ m+d
¬(b > c)/

q2,6

b > c/
−/c⇐ m−g

x < y/
−/ f ⇐ z− c

¬(x < y)/
−/ f ⇐ z+ c

g⇐ g+10,
z⇐ x+ y

(b) M2

−/OUT (P, f)

Figure 3.6: FSMDs before and after scheduling.

considered to be corresponding states.

1) The path characteristics of q1,0 � q1,1 and q2,0 � q2,1 are found to match in all

aspects other than the definition of a. Hence, they are declared to be candidate C-

equivalent and the path pair is stored in the LIST (step 13 of correspondenceChecker).

2) Next, the loops q1,1 � q1,1 and q2,1 � q2,1 are compared. The variables s and k are

found to be updated identically in both the loops while the values for a, viz., b+ c in

M1 and the symbolic value “a” in M2, along with those of b and c remain unmodified

in the loops; hence, it is concluded that code motion across loop may have taken place

and the paths representing the loops are appended to the LIST .

3) The paths q1,1 � q1,3 and q2,1 � q2,4 are analyzed next. The definition of a in the

latter path is found to be equivalent to that in M1. The values of g and z, however,

mismatch in the paths being compared and consequently, the paths are also put in the

LIST .

4) When the paths q1,3
b>c
−−−−� q1,5 and q2,4

b>c
−−−−� q2,5 are compared, the values of

the variables g and c match but the mismatch for z still persists; therefore, these paths

are put in the LIST as well.

5) Finally, on comparing the paths q1,5
x<y
−−−−� q1,0 and q2,5

x<y
−−−−� q2,0, all values are

3.5 The overall verification method 55

found to match. Consequently, these pair of paths are declared to be U-equivalent.

Note that as per Definition 7, a pair of candidate C-equivalent pair of paths can be de-

clared to be actually C-equivalent when all the paths emanating from that pair are

found to be U-equivalent or C-equivalent. Hence, the paths q1,3
b>c
−−−−� q1,5 and

q2,4
b>c
−−−−� q2,5 cannot be declared as C-equivalent yet.

6) Owing to the depth-first traversal of the FSMDs (achieved through recursion in

step 14 of correspondenceChecker), the paths q1,5
¬(x<y)
−−−−−−� q1,0 and q2,5

¬(x<y)
−−−−−−�

q2,0 are examined next. Note that the LIST available in this step is the same as

that of step 5. Again these paths are found to be U-equivalent and now the paths

q1,3
b>c
−−−−� q1,5 and q2,4

b>c
−−−−� q2,5 are declared to be C-equivalent.

7) Now the paths q1,3
¬(b>c)
−−−−−−� q1,5 and q2,4

¬(b>c)
−−−−−−� q2,5 are compared. It is found

that they differ in the values of the variables g and z; however, g is no longer a live

variable at q1,5 and q2,5 – hence its value can be ignored.

8-9) With the propagated value of z, the pairs of paths q1,5
x<y
−−−−� q1,0 and q2,5

x<y
−−−−�

q2,0, and q1,5
¬(x<y)
−−−−−−� q1,0 and q2,5

¬(x<y)
−−−−−−� q2,0 are declared to be U-equivalent

and all the path pairs present in the LIST are declared to be C-equivalent. �

3.5.2 An example of dynamic loop scheduling

The dynamic loop scheduling (DLS) [135] transformation modifies the control struc-

ture of a behaviour by introducing new branches while keeping all the loop feedback

edges intact. As already mentioned in Section 3.3.2, the LIST has been introduced to

detect crossing over of loops. This is a deviation from [21] where back edges were

used for detection of loops. The new method of loop detection aids in verifying DLS

transformations [135] which [21] cannot handle. The example in Figure 3.7 is used to

illustrate verification of DLS transformations.

Example 6. The example given in Figure 3.7(a) shows the original behaviour and Fig-

ure 3.7(b) shows its transformed version after application of DLS. Note that the states

q1,a, q1,b of FSMD M1 and the states q2,a, q2,b of FSMD M2 qualify as cut-points.

Initially, q1,a and q2,a are considered as corresponding states and the verification pro-

cedure then proceeds in the following sequence.

1) The path pair 〈q1,a � q1,b, q2,a � q2,b〉 is declared as U-equivalent.

2) The path pair 〈q1,a
¬p1−−−−� q1,a, q2,a

¬p1−−−−� q2,a〉 is declared as U-equivalent.

56 Chapter 3 Translation Validation of Code Motion Transformations

q1,a

q1,bq1,c

p1(w)/w⇐ f1(w)

p2(t)/t⇐ g1(t)

¬p2(t)/t⇐ g2(t)

¬p1(w)/w⇐ f2(w)

−/OUT (P, t +w)

(a) Original behaviour M1

q2,a

q2,b

p1(w)/w⇐ f1(w)

¬p2(t)∧ p1(w)/t⇐ g2(t),w⇐ f1(w)

p2(t)∧ p1(w)/t⇐ g1(t),w⇐ f1(w)

¬p1(w)/w⇐ f2(w)

q2,c

p2(t)∧¬p1(w)/t⇐ g1(t),w⇐ f2(w)

¬p2(t)∧¬p1(w)/t⇐ g2(t),w⇐ f2(w)

−/OUT (P, t +w)

(b) After DLS M2

Figure 3.7: An example of dynamic loop scheduling (DLS).

Next, we consider the paths emanating from the corresponding states q1,b and q2,b.

3) For the path q1,b
p2−−−� q1,a in M1, it is found that there are two paths in M2, namely

q2,b
p2∧p1−−−−−� q2,b and q2,b

p2∧¬p1−−−−−−� q2,a, emanating from q2,b in M2 whose condi-

tions of execution are stronger than the path of M1. This results in declaring the paths

q1,b
p2−−−� q1,a and ϖq2,b as candidate C-equivalent and the path pair is stored in the

LIST .

4) The paths q1,a � q1,b (with respect to the propagated vector 〈p2(t),〈g1(t),w〉〉) and

q2,b
p2∧p1−−−−−� q2,b (w.r.t. 〈>,〈t,w〉〉) are now found to be U-equivalent since the con-

dition of execution and the data transformation of the former path match with those

of the latter. It is to be noted that after considering the latter path in M2, one ends

up in q2,b which is the final state of a path (specifically, ϖq2,b) that is already present

in the LIST . However, since U-equivalence was established by the time this state is

(re)visited, the equivalence of the paths can be ascertained, and the call to loopInvari-

ant is no longer required.

5) First of all, note that when this step is executed, the invoked call to this instance

of correspondenceChecker has {〈q1,b
p2−−−� q1,a,ϖq2,b〉} in the LIST as well. A sim-

ilar U-equivalence is now established between the paths q1,a
¬p1−−−−� q1,a of M1 and

q2,b
p2∧¬p1−−−−−−� q2,a of M2.

3.5 The overall verification method 57

Since eventually for all paths emanating from the final state of q1,b
p2−−−� q1,a, a U-

equivalent path is discovered that originates from the final state of ϖq2,b , the path pair

〈q1,b
p2−−−� q1,a,ϖq2,b〉 is declared as actually C-equivalent, i.e. put in Ec and the LIST

is rendered empty by removing its last (and only) entry. Note that unless both the paths

from q1,a, i.e. q1,a
p1−−−� q1,b and q1,a

¬p1−−−−� q1,a are treated, LIST is not updated –

as borne out by the fact that LIST update takes place after the loop 1 - 21 in corre-

spondenceChecker.

6) The paths q1,b
¬p2−−−−� q1,a and ϖq2,b are considered as candidate C-equivalent, sim-

ilar to step 3.

7-8) The path pairs 〈q1,a � q1,b,q2,b
¬p2∧p1−−−−−−� q2,b〉 and 〈q1,a

¬p1−−−−� q1,a,q2,b
¬p2∧¬p1−−−−−−−�

q2,a〉 are declared as U-equivalent, and 〈q1,b
¬p2−−−−� q1,a,ϖq2,b〉 is declared as actually

C-equivalent. �

Now let us consider what would have gone wrong if back edges were used to detect

loops instead of LIST . The first two steps of the method described in [21] would have

been identical to the ones given above, and the states q1,b and q2,b would have been

declared as corresponding states. In step 3, the method in [21] would find the paths

q1,b
p2−−−� q1,a and ϖq2,b as candidate C-equivalent (similar to ours); however, it would

also detect q1,b
p2−−−� q1,a as a back edge to q1,a. While entering the loop at q1,a, the

variable t had the symbolic value “t”, but after step 3 the propagated vector computed

for q1,a would have the value g1(t) for t. Clearly, there is a mismatch in the values

for t, and therefore the method in [21] would terminate declaring the two FSMDs to

be possibly non-equivalent. It is important to note that in case of code motions across

loops, some paths will be detected to be C-equivalent while entering the loops. Hence,

whenever the entry/exit state is revisited without resolving the mismatches, the state

will definitely appear as a final state of some path in LIST , thereby leading to detection

of loops (and without having any explicit knowledge about back edges).

The bisimulation based method in [115] can handle the control structure modifi-

cations stated in the path based scheduling method [33]. In general, during path based

scheduling, two consecutive paths get concatenated into one whose condition of exe-

cution is obtained by taking the conjunction of those of its constituent paths. However,

unlike [33], DLS may introduce new branches by concatenating paths that lie within

a loop with the “exit” path of that loop (such as the branches q2,b
p2∧¬p1−−−−→ q2,c and

q2,b
¬p2∧¬p1−−−−−→ q2,c in Figure 3.7(b)). A primary requirement for the equivalence check-

58 Chapter 3 Translation Validation of Code Motion Transformations

ing method of [115] is that the loop exit conditions must be identical in order to find

whether two states are in a relation (a concept similar to our corresponding states);

consequently, the method of [115] results in a failure on application of DLS. For a

more sophisticated example of DLS, one may refer to [91], which both the path ex-

tension method [91, 95] and the symbolic value propagation method described in this

work can handle.

3.6 Correctness and complexity of the equivalence check-

ing procedure

3.6.1 Correctness

Theorem 3 (Partial correctness). If the verification method terminates in step 8 of the

function containmentChecker, then M1 vM2.

Proof: The proof is tantamount to ascertaining that if the verification method ter-

minates in step 8 of containmentChecker, then both hypotheses 1 and 2 of Theorem 7

are satisfied by the path covers P1 and P2 for the FSMDs M1 and M2, respectively.

The path covers P1 and P2 comprise of paths starting from and ending in cut-point(s)

without having any intermediary cut-point. The set Eu of U-equivalent paths and

Ec of C-equivalent paths are updated in steps 17 and 22, respectively, of correspon-

denceChecker. The fact that the pair of paths added to the set Eu and Ec are indeed

U-equivalent and C-equivalent, respectively, is affirmed by the function findEquiva-

lentPath.

Now, we need to prove that E = Eu
⋃

Ec contains a member for each path in P1.

Suppose a path α exists in P1 that does not have a corresponding member in E. Ab-

sence of α in E indicates that the path has not been considered at all during execution

of the verification method. Since the state αs is reachable (by definition) there must

be some other path α′ that leads to it. Let us consider the following cases:

α′ ∈ E : Then E must contain some member of the form 〈α′,β′〉, where β′ ∈ P2

and either (i) α′ 'c β′ which means α would definitely have been considered in some

subsequent recursive call of correspondenceChecker, or (ii) α′ ' β′ which means the

3.6 Correctness and complexity of the equivalence checking procedure 59

end state of α′, i.e., the start state of α, must be a member of δ and α must have even-

tually been considered as given in step 4 of containmentChecker. (contradiction)

α′ 6∈ E : In such a case, one should consider the path α′′ that leads to α′. Now,

these two cases hold for α′′ as well. A repetitive application of the argument lands up

in the paths emanating from the reset state q1,0, which is a member of δ by step 2 of

containmentChecker; here steps 3 and 4 of containmentChecker ensure invocation of

correspondenceChecker with q1,i = q1,0 and step 1 of correspondenceChecker ensures

that paths from q1,0 must have been treated, thereby again leading to a contradiction.

What remains to be proved is that hypothesis 2 of Theorem 7 holds when the

verification method terminates in step 8 of containmentChecker. Suppose it does not.

Then there exist paths α ∈ P1 and β ∈ P2 such that α f = q1,0, β f = q2,0 and α'c β. It

would result in trying to extend a path beyond the reset states, and thus, the function

correspondenceChecker returns failure to containmentChecker as shown in step 10,

whereupon the latter terminates in step 5 and not in step 8. (contradiction) �

Theorem 4 (Termination). The verification method always terminates.

Proof: With respect to the call graph of Figure 3.5, we prove the termination of

the modules in a bottom-up manner. The functions valuePropagation and loopIn-

variant obviously execute in finite time since the former involves comparison of two

path characteristics and two propagated vectors, whereas the latter involves compar-

ison of two propagated vectors only. The for-loop in findEquivalentPath is executed

only ‖P2‖ number of times which is finite. The outermost for-loop in the function

correspondenceChecker can be executed ‖P1‖ times which is also finite. Whenever

correspondenceChecker is invoked with the states q1,i and q2, j as arguments, there

is a possibility that the function is recursively invoked with the end states of some

path α originating from q1,i and some path β originating from q2, j. Now, it re-

mains to be shown that correspondenceChecker can invoke itself recursively only

finite number of times. Let us associate the tuple 〈n0,n1〉 ∈ N2 to each invocation

of correspondenceChecker(α f
m,β

f
m, . . .) (step 14), where n0 and n1 denote the number

of paths that lie ahead of α
f
m and β

f
m in FSMD M1 and FSMD M2, respectively. (Note

that one cannot go beyond the reset states.) Also, let 〈n′0,n′1〉 < 〈n0,n1〉 if n′0 < n0

or, n′0 = n0 and n′1 < n1. Note that in the 4-tuple returned by findEquivalentPath in

step 3 of correspondenceChecker, αm and β both cannot be null paths simultaneously.

Hence, a sequence of recursive invocations of correspondenceChecker can be repre-

60 Chapter 3 Translation Validation of Code Motion Transformations

sented by a sequence of these tuples 〈n0,n1〉 > 〈n′0,n′1〉 > 〈n′′0,n′′1〉, and so on; specif-

ically, this is a strictly decreasing sequence. Since N2 is a well-founded set [118]

of pairs of nonnegative numbers having no infinite decreasing sequence, correspon-

denceChecker cannot call itself recursively infinite times. The only loop in contain-

mentChecker depends upon the size of δ, the set of corresponding states. Note that

correspondenceChecker is called in this loop for every member of δ only once. Since

the number of states in both the FSMDs is finite, the number of elements in δ has to

be finite. �

3.6.2 Complexity

The complexity of the overall verification method is in the order of product of the

following two terms: (i) the complexity of finding a U-equivalent or a C-equivalent

path for a given path from a state, and (ii) the number of times we need to find such

a path. The first term is the same as the complexity of findEquivalentPath(α,q2, j,· · ·)
which tries to find a path β starting from q2, j ∈ M2 such that β ' α or β 'c α. Let

the number of states in M2 be n and the maximum number of parallel edges between

any two states be k. Therefore, the maximum possible state transitions from a state

are k ·n. The condition of execution associated with each transition emanating from a

state is distinct. The function checks all transitions from q2, j in the worst case. Note

that the conditions of execution and the data transformations of the paths are stored

as normalized formulae [141] by the function containmentChecker. If ‖F‖ be the

length of the normalized formula (in terms of the number of variables along with that

of the operations in F), then the complexity of normalization of F is O(2‖F‖) due to

multiplication of normalized sums. As such, all the paths in the FSMDs will have their

data transformations and conditions of execution computed during the initialization

steps in the function containmentChecker. However, the function findEquivalentPath

needs to substitute the propagated values in these entities necessitating multiplication.

Hence, the complexity of finding a U-equivalent or a C-equivalent path is O(k · n ·
2‖F‖). On finding a C-equivalent path, symbolic value propagation is carried out in

O(2‖F‖ · |V1
⋃

V2|) time. So, the overall complexity is O(2‖F‖ · (k ·n+ |V1
⋃

V2|)).

The second term is given by the product of (i) the number of times correspon-

denceChecker is called from containmentChecker, which is the same as the size of

the set of corresponding states δ, and (ii) the number of recursive calls made to cor-

3.7 Experimental Results 61

respondenceChecker (in the worst case). We notice that if the number of states for

the original FSMD is n, then the number of states for the transformed FSMD is in

O(n) for both path based scheduler [33] and SPARK [64]. So, for simplicity, let the

number of states in M2 be n as well. In the worst case, all the states of M1 may be

cut-points and the number of paths in M1 is at most k · n · (n− 1)/2. In this case the

correspondenceChecker can recursively call itself as many as (n−1) times leading to

consideration of k ·(n−1)+k2 ·(n−1) ·(n−2)+ · · ·+k(n−1) ·(n−1) ·(n−2) · · ·2 ·1'
k(n−1) · (n−1)(n−1) number of paths. Also, ‖δ‖ ≤ n. Therefore, the complexity of the

overall method is O((k ·n+ |V1
⋃

V2|) ·2‖F‖ ·n ·k(n−1) · (n−1)(n−1)) in the worst case.

It is important to note that in [90], the authors had neglected the time complexity of

computing the path characteristics of the concatenated paths that result from path ex-

tensions. Upon considering the same, the worst case time complexity of the presented

method is found to be identical to that of [90].

3.7 Experimental Results

Table 3.1: Verification results based on our set of benchmarks

Benchmarks Original FSMD Transformed FSMD #Variable #across Maximum Time (ms)

#state #path #state #path com uncom loops mismatch PE SVP

BARCODE-1 33 54 25 56 17 0 0 3 20.1 16.2

DCT-1 16 1 8 1 41 6 0 6 6.3 3.6

DIFFEQ-1 15 3 9 3 19 3 0 4 5.0 2.6

EWF-1 34 1 26 1 40 1 0 1 4.2 3.6

LCM-1 8 11 4 8 7 2 1 4 × 2.5

IEEE754-1 55 59 44 50 32 3 4 3 × 17.7

LRU-1 33 39 32 38 19 0 2 2 × 4.0

MODN-1 8 9 8 9 10 2 0 3 5.6 2.5

PERFECT-1 6 7 4 6 8 2 2 2 × 0.9

QRS-1 53 35 24 35 25 15 3 19 × 15.9

TLC-1 13 20 7 16 13 1 0 2 9.1 4.1

The verification procedure presented in this chapter has been implemented in C

on a 2.0 GHz Intel R© CoreTM2 Duo machine and satisfactorily tested on several bench-

marks. The results are provided in Table 3.1. Some of these benchmarks, such as

BARCODE, LCM, QRS and TLC, are control intensive; some are data intensive, such

as DCT, DIFFEQ and EWF, whereas some are both control and data intensive, such as

IEEE754 and LRU. The transformed FSMD is obtained from the original one in multi-

62 Chapter 3 Translation Validation of Code Motion Transformations

Table 3.2: Verification results based on the benchmarks presented in [95]

Benchmarks PE (in ms) SVP (in ms)

BB-based path based SPARK BB-based path based SPARK

BARCODE-2 12.1 15.4 19.8 10.1 13.1 12.0

DCT-2 3.3 3.1 3.3 2.3 2.6 2.7

DHRC-2 29.6 28.1 29.4 25.9 28.0 26.9

DIFFEQ-2 1.4 2.5 3.4 1.2 1.4 1.4

EWF-2 2.2 1.5 2.0 1.4 1.3 1.8

GCD-2 3.0 4.1 3.0 1.6 1.7 1.3

IEEE754-2 18.3 14.4 25.8 20.1 14.6 20.1

LRU-2 5.2 4.8 7.6 4.3 4.0 4.1

MODN-2 2.4 2.4 5.4 1.5 1.5 2.3

PERFECT-2 1.9 1.7 2.4 0.8 0.9 1.2

PRAWN-2 192.8 223.6 217.8 52.2 59.5 48.9

TLC-2 3.4 6.9 2.9 3.0 3.3 2.9

ple steps. First, we feed the original FSMD to the synthesis tool SPARK [64] to get an

intermediate FSMD which is then converted into the (final) transformed FSMD man-

ually according to a path-based scheduler [33] and accounting for induction variable

elimination. This multiple-step process helps us ascertain that our method can perform

equivalence checking successfully when both control structure has been modified and

code motions have occurred. It is to be noted that we prevent SPARK from applying

loop shifting and loop unrolling transformations since they cannot be handled by our

verifier presently. The column “#across loops” in Table 3.1 represents the number of

code motions across loops; the ‘0’ entries indicate that the transformed FSMDs con-

tain no operation that has been moved across loop(s). However, the transformations do

help in reducing the number of states (BARCODE, DCT, EWF, etc.) and/or the num-

ber of paths (TLC). The column Maximum Mismatch displays the maximum number

of mismatches found between two value-vectors for each benchmark. The run-times

obtained by executing the benchmarks by our tool (SVP) as well as by that of [95] (PE)

show that the symbolic value propagation method takes less time. The crosses (×) in

the column corresponding to PE represents that the tool exited with false negative re-

sults in those cases since it is unable to handle code motions across loops. Other than

transformations like path merging/splitting and code motions across loops, the trans-

formations that were applied to the original behaviours to produce the corresponding

optimized behaviours include associative, commutative, distributive transformations,

copy and constant propagation, common subexpression elimination, arithmetic ex-

3.7 Experimental Results 63

Table 3.3: Verification results based on the benchmarks presented in [90]

Benchmarks #BB #Branch #Path #State Maximum Time (ms)

orig trans mismatch PN SVP

BARCODE-3 28 25 55 32 29 5 3.00E+3 12.2

DHRC-3 7 14 31 62 47 5 1.62E+5 28.1

DIFFEQ-3 4 1 3 16 10 4 2.69E+2 4.0

FINDMIN8-3 14 7 15 8 9 7 1.00E+5 2.3

GCD-3 7 5 11 7 6 2 3.25E+2 2.1

IEEE754-3 40 28 59 55 42 6 3.40E+5 24.0

LRU-3 22 19 39 33 25 4 3.00E+3 4.7

MODN-3 7 4 9 6 5 4 5.41E+2 2.4

PARKER-3 14 6 13 12 10 6 6.00E+3 3.1

PERFECT-3 6 3 7 9 6 2 1.07E+2 1.1

PRAWN-3 85 53 154 122 114 8 5.81E+5 61.5

QRS-3 26 16 35 53 24 12 1.94E+5 15.7

TLC-3 17 6 20 13 13 3 2.45E+2 4.0

WAKA-3 6 2 5 9 12 6 1.00E+3 2.2

pression simplification, partial evaluation, constant (un)folding, redundant computa-

tion elimination, etc. As demonstrated in Table 3.1, the verification tool was able to

establish equivalences in all the cases.

Table 3.2 gives a comparison of the execution times required by PE and SVP for

the benchmarks presented in [95] which involve no code motion across loops. More-

over, the transformed FSMDs considered in [95] have been obtained by subjecting the

original FSMDs to a single compiler at a time. Although the source FSMDs for all the

common benchmarks in Table 3.1 and Table 3.2 are identical, the transformed FSMDs

are not. Hence, to differentiate between the benchmark suites, the numerals 1 and 2

have been appended with the benchmark names. From the results it can be seen that

for the benchmarks which are scheduled using a basic block (BB) based SAST [117]

and the path based scheduler, SVP performs somewhat better than PE and more so for

SPARK.

We further our investigation by subjecting the source codes to non-uniform code

motions such as speculation, reverse speculation, safe speculation, etc. A recent

work [90] addresses verification of such code motions by analyzing the data-flow of

the programmes. This method resolves the decision of extending a path upon finding a

mismatch for some variable, x say, by checking whether the mismatched value of x is

64 Chapter 3 Translation Validation of Code Motion Transformations

used in some subsequent path or not before x is defined again. For the data-flow analy-

sis, it constructs a Kripke structure from the given behaviour, generates a CTL formula

to represent the def-use relation (for x) and employs the model checker NuSMV [38]

to find whether that formula holds in the Kripke structure or not. Depending upon the

output returned by the model checker, paths are extended accordingly. However, in the

presence of code motions across loop, the method of [90] fails due to the same reason

as that of [95], i.e., prohibition of extension of paths beyond loops. For comparing

the method of [90] with that of ours, another set of test cases have been constructed

where the original behaviours have undergone both uniform and non-uniform code

motions to produce the transformed behaviours. It is important to note that in none

of these cases code motion across loop has been applied. The time taken by our tool

and that of [90] (PN) are tabulated in Table 3.3. The method of PN takes considerable

amount of more time because it spends a large proportion of its execution time inter-

acting with NuSMV through file handling. Although a comparative analysis with the

method of [115] would have been relevant, we cannot furnish it since their tool is not

available to us.

3.8 Conclusion

In this chapter, we have presented a symbolic value propagation based equivalence

checking method which not only handles control structure modifications but also code

motions across loops apart from simpler uniform and non-uniform code motions with-

out needing any supplementary information from the synthesis tools. Specifically, the

contributions of the present chapter are as follows. (i) A new concept of symbolic

value propagation based equivalence checking has been presented for verification of

code motions across loops without compromising the capability of handling uniform

and non-uniform code motions and control structure modifications achieved in earlier

methods [90, 95]. (ii) The correctness of symbolic value propagation as a method

of equivalence checking, and the correctness and the complexity of the equivalence

checking procedure are treated formally. (iii) The computational complexity of the

presented method has been analyzed and found to be no worse than that of [90]. (iv)

Experimental results for several non-trivial benchmarks have been presented to em-

pirically establish the effectiveness of the presented method. The experimental results

demonstrate that our mechanism can verify equivalence between two behaviours even

3.8 Conclusion 65

when one of them has been subjected to successive code transformations using the

SPARK high-level synthesis tool and a path based scheduler. The method has been

tested successfully on several benchmarks, including those used in [95] and [90]. The

results show that the method performs comparably with both these methods in terms

of verification time required and outperforms them in terms of the type of transforma-

tions handled. This method does not handle transformations such as loop unrolling,

loop merging and loop shifting. Loop shifting is handled to some extent in [103, 115]

at the cost of termination; however, they cannot handle control structure transforma-

tions introduced by [135] which our method can. While there are several other tech-

niques which determine equivalence in the presence of control structure modifications,

the only techniques [80, 150] which handle code motions across loops require addi-

tional information from the synthesis tools that is difficult to obtain in general. Note

that while the method described in [150] captures infinite loops and computations that

may fail, our method is capable of handling the former but needs some improvement

to cover the latter.

Chapter 4

Deriving Bisimulation Relations from
Path Based Equivalence Checkers

4.1 Introduction

For translation validation, primarily two approaches prevail namely, bisimulation based

ones and path based ones; both have their own merits and demerits. As underlined

in Section 1.1.2, the main drawback of bisimulation based approaches is that they

require the control structures of the source and the target programs to be identical;

although this limitation is alleviated to some extent in [115] using knowledge of the

scheduling mechanism, more complex non-structure preserving transformations, such

as those applied by [135], still remain beyond their scope. On the contrary, path based

techniques [22, 90, 95] are adept in handling such non-structure preserving transfor-

mations. However, transformations such as loop shifting [44] that can be handled by

bisimulation based methods of [103, 104] still elude the path based equivalence check-

ing methods. Moreover, while the bisimulation based approaches are not guaranteed

to terminate, the path based techniques are. Considering the importance of projecting

equivalence of two behavioural specifications in terms of a bisimulation relation be-

tween them, in this chapter we evolve a mechanism of deriving one from the output

of a path based equivalence checker.

We define the notion of simulation and bisimulation relations in the context of the

FSMD model in Section 4.2. We then show in Sections 4.3 and 4.4 that a bisimulation

67

68 Chapter 4 Deriving Bisimulation Relations

relation can be constructed whenever two FSMDs are found to be equivalent by both a

path extension based and a symbolic value propagation based equivalence checker. It

is to be noted that none of the bisimulation relation based approaches has been shown

to tackle code motion across loops; therefore, the present work demonstrates, for the

first time, that a bisimulation relation exists even under such a context. The chapter is

concluded in Section 4.5.

4.2 The simulation and the bisimulation relations be-

tween FSMD models

Let us consider the FSMD model 〈Q,q0, I,V,O,τ : Q× 2S → Q, h : Q× 2S → U〉,
with the notations having their usual meanings as mentioned in Section 3.2. Let v

denote a vector (an ordered tuple) of variables of I and V assuming values from the

domain Dv = Λv∈I∪V Dv, where Dv is the domain of the variable v and Λ represents

the Cartesian product of sets. Let q(v), q ∈Q, denote the set of values assumed by the

variables in the state q. Each element of q(v) is called a data state at q and is denoted

as σq. Let Σ =
⋃

q∈Q
{σq} be the set of all the data states.

An FSMD can be represented in a natural way as a digraph with the control states

as the vertices and the labeled edges capturing the transition function τ and the update

function h. Specifically, if there are two control states qi and q j such that τ(qi,c(v)) =

q j and h(qi,c(v)) is represented as v⇐ f (v), then there is an edge from qi to q j with

label c(v)/v⇐ f (v) in the digraph representation of the FSMD. A transition which

updates a storage variable with an input is called an input transition. A transition

which updates an output variable is called an output transition. A control state along

with a data state together constitute a configuration as defined below.

Definition 8 (Configuration). Given an FSMD M = 〈Q,q0, I,V,O,τ,h〉, we define a

configuration to be a pair 〈q,σ〉, where q ∈ Q and σ ∈ q(v).

Definition 9 (Execution Sequence). For a given FSMD M = 〈Q,q0, I,V,O,τ,h〉, an ex-

ecution sequence η is a sequence of configurations of the form 〈〈qi0,σi0〉,〈qi1,σi1〉, . . . ,
〈qin,σin〉〉, such that ∀ j,0 ≤ j ≤ n,σi j ∈ qi j(v),τ(qi j ,c(σi j)) = qi j+1 , where c(σi j) is

true and h(qi j ,c(σi j)) ∈U defines the update operation by which the data state σi j+1

is obtained from σi j .

4.2 The FSMD Model 69

q1,i

q1,k

η1

q2, j

q2,l

η2

φi, j(σ1,i,σ2, j)

φk,l(σ1,k,σ2,l)

Figure 4.1: An example showing two execution sequences from two FSMDs.

Existence of such an execution sequence η is denoted as 〈qi0 ,σi0〉;η 〈qin,σin〉 .

We denote by Ni the set of all execution sequences in FSMD Mi. From now onward we

speak of two FSMDs M1 = 〈Q1,q1,0, I,V1,O, τ1,h1〉 and M2 = 〈Q2,q2,0, I,V2,O,τ2,h2〉
whose behaviours we seek to examine for equivalence; V1∩V2 6= Φ. Two output tran-

sitions 〈q1,i,q1,k〉 of M1 and 〈q2, j,q2,l〉 of M2 are said to be equivalent if they update

the same output variable(s) with the same values for all execution sequences leading

to them.

Definition 10 (Equivalence of Execution Sequences). Two execution sequences η1 ∈
N1 of M1 and η2 ∈N2 of M2 are said to be equivalent, written as η1 ≡ η2, if the two

sequences contain output transitions that are pairwise equivalent.

For the subsequent discussion, we suffix the (set of) data states in some control

state of the machine Mi, i∈ {1,2}, in a natural way. Similarly, we rename the variables

occurring in FSMD Mi by adding the suffix i. Thus, for machine Mi, i∈ {1,2}, σi ∈ Σi

represents a data state of Mi and σi, j ∈ qi, j(vi) represents a data state at the control

state qi, j. A verification relation between two FSMDs M1 and M2 is a set of triples

〈q1,i,q2, j,φi, j〉, where q1,i ∈ Q1, q2, j ∈ Q2, φi, j ⊆ q1,i(v1)× q2, j(v2). The notation

φi, j(σ1,i,σ2, j) = true indicates that φi, j is satisfied by the data states σ1,i of M1 and

σ2, j of M2. It is important to note that φ0,0 is identically true because a computation is

assumed to define always storage variables (which are later used) through some input

transitions. Based on the above discussions, a simulation relation can be defined as

follows (in accordance with the definition of simulation relation given in [104]).

Definition 11 (Simulation Relation). A simulation relation S for two FSMDs M1 =

〈Q1,q1,0, I,V1,O, τ1,h1〉 and M2 = 〈Q2,q2,0, I,V2,O,τ2,h2〉 is a verification relation

which satisfies the following two clauses:

70 Chapter 4 Deriving Bisimulation Relations

1. S(q1,0,q2,0, true), and

2. ∀q1,i,q1,k ∈ Q1,σ1,i ∈ q1,i(v),σ1,k ∈ q1,k(v), η1 ∈N1,q2, j ∈ Q2,σ2, j ∈ q2, j(v)[
〈q1,i,σ1,i〉;η1 〈q1,k,σ1,k〉 ∧ φi, j(σ1,i,σ2, j) ∧ S(q1,i,q2, j,φi, j)⇒
∃q2,l ∈ Q2,σ2,l ∈ q2,l(v),η2 ∈N2{
〈q2, j,σ2, j〉;η2 〈q2,l,σ2,l〉 ∧ η1 ≡ η2 ∧ φk,l(σ1,k,σ2,l) ∧ S(q1,k,q2,l,φk,l)

}]
.

Intuitively, the two clauses mentioned above state that: (i) the reset state of FSMD

M1 must be related to the reset state of FSMD M2 for all data states, and (ii) if two

states of M1 and M2 with their respective data states are related and M1 can proceed

along an execution sequence, η1 say, then M2 must also be able to proceed along an

execution sequence, η2 say, such that η1 ≡ η2 and the end states of the two execution

sequences must also be related. Figure 4.1 depicts the second clause of the defini-

tion diagrammatically. We now define a bisimulation relation using the definition of

simulation relation.

Definition 12 (Bisimulation Relation). A verification relation B for two FSMDs M1

and M2 is a bisimulation relation between them iff B is a simulation relation for M1,M2

and B−1 = {(q2, j,q1,i,φ) | B(q1,i,q2, j,φ)} is a simulation relation for M2,M1.

4.3 Deriving simulation relation from the output of a

path extension based equivalence checker

In light of the definitions given in the previous section, let us revisit some of the earlier

notions which we have come across in Section 3.2. A path α is characterized by an or-

dered pair 〈Rα,rα〉, where Rα is the condition of execution of α satisfying the property

that ∀σαs ∈ Σ, Rα(σαs) implies that the path α is executed if control reaches the state

αs; the second member rα = 〈sα,θα〉, where sα is the functional transformation of the

path α, i.e., σα f = sα(σαs) and θα represents the output list of data values of some

variables produced along the path α. The relation of corresponding states is denoted

as δ⊆ Q1×Q2. Based on the above discussion, we now define a verification relation

between two FSMDs.

Definition 13 (Type-I Verification Relation). A type-I verification relation V for two

FSMDs M1 = 〈Q1,q1,0, I,V1,O,τ1,h1〉 and M2 = 〈Q2,q2,0, I,V2,O,τ2,h2〉 is a verifi-

cation relation which satisfies the following two clauses:

4.3 From path extension based equivalence checker 71

1. V (q1,0,q2,0, true), and

2. ∀q1,k ∈ Q1, q2,l ∈ Q2
[

V (q1,k,q2,l,φk,l)⇔
∃q1,i ∈ Q1(q1,i � q1,k ∈ P1) ∧
∀q1,i ∈ Q1

{
q1,i � q1,k = α, say, ∈ P1⇒

∃q2, j ∈ Q2
(

q2, j � q2,l = β, say, ∈ P2 ∧ α' β ∧ V (q1,i,q2, j,φi, j)
) }]

.

Theorem 5. The verification relation V for two FSMDs M1,M2 is a simulation rela-

tion for M1,M2, i.e., ∀〈q1,i,q2, j,φi, j〉,〈q1,i,q2, j,φi, j〉 ∈ V ⇒ 〈q1,i,q2, j,φi, j〉 ∈ S

Proof: For the pair of reset states, 〈q1,0,q2,0, true〉 is in V and also in S by the

respective first clauses in Definition 13 and Definition 11. For 〈q1,k,q2,l,φk,l〉 ∈ V ,

where q1,k 6= q1,0 and q2,l 6= q2,0, by application of clause 2 in Definition 13 m times,

m ≥ 1, we may conclude that there exists a sequence of paths α1,α2, . . . ,αm, where

αh ∈ P1,1≤ h≤ m, and another sequence of paths β1,β2, . . . ,βm, where βh ∈ P2,1≤
h ≤ m, such that αs

1 = q1,0,α
f
m = q1,k,β

s
1 = q2,0,β

f
m = q2,l and αh ' βh,1 ≤ h ≤

m; also the corresponding sequence of configurations 〈q1,0,σ1,0〉
α1−−−� 〈q1,i1,σ1,i1〉

α2−−−� · · ·
αm−−−� 〈q1,im = q1,k,σ1,im = σ1,k〉 and 〈q2,0,σ2,0〉

β1−−−� 〈q2, j1,σ2, j1〉
β2−−−�

· · ·
βm
−−−� 〈q2, jm = q2,l,σ2, jm =σ2,l〉 satisfy the property that 〈q1,ih,q2, jh,φih, jh〉 ∈V ,1≤

h≤m. We shall prove that 〈q1,ih,q2, jh,φih, jh〉 ∈ S,1≤ h≤m, holds by induction on h.

Basis case (h = 1): In this case, there must exist a single path q1,0 � q1,k = α1 in

P1 and a path q2,0 � q2,l = β1 in P2 such that α1 ' β1; additionally, we also have

σ1,k = sα1(σ1,0) and σ2,l = sβ1(σ2,0). So, in clause 2 of Definition 11, let q1,i =

q1,0,σ1,i = σ1,0,σ1,k = sα1(σ1,0) so that σ1,k ∈ q1,k(v),η1 =α1,q2, j = q2,0,σ2, j = σ2,0.

We notice that the antecedents of clause 2 in Definition 11 hold; specifically, the an-

tecedent 〈q1,0,σ1,0〉 ;η1 〈q1,k,σ1,k〉 holds by the right hand side (rhs) of clause 2

in Definition 13; the antecedent φ0,0(σ1,0,σ2,0) holds since φ0,0 is identically true;

〈q1,0,q2,0,φ0,0〉 ∈ S by clause 1 in Definition 11. Hence, the consequents of clause 2

in Definition 11 hold with σ2,l = sβ1(σ2,0),η2 = β1; so from the fourth consequent,

we have 〈q1,k,q2,l,φk,l〉 ∈ S.

Induction hypothesis: Let 〈q1,k,q2,l,φk,l〉 ∈ S hold whenever the states q1,k in Q1 and

q2,l in Q2 are reachable from q1,0 and q2,0, respectively, through sequences of length

n of pairwise equivalent paths from P1 and P2.

Induction step: Let the state q1,k be reachable from q1,0 through the sequence q1,0
α1−−−�

q1,i1
α2−−−� · · ·

αn−−−� q1,in
αn+1−−−−� q1,k in M1 and the state q2,l be reachable from q2,0

through the sequence q2,0
β1−−−� q2, j1

β2−−−� · · ·
βn
−−−� q2, jn

βn+1−−−−� q2,l in M2 such

72 Chapter 4 Deriving Bisimulation Relations

Algorithm 6 deriveSimRelVR1 (FSMD M1, FSMD M2, Set δ)
Inputs: Two FSMDs M1 and M2, and the set δ of corresponding state pairs obtained from M1

and M2 by the path extension based equivalence checker.

Outputs: A verification relation V1 = {〈q1,k,q2,l,φk,l〉|〈q1,k,q2,l〉 ∈ δ}.

1: Let the relation V1 be empty.

2: Perform live variable analyses on M1 and M2 and compute the set of live variables for

each of the states that appears as a member of the state pairs in δ.

3: Rename each v j ∈Vi as vi, j, i ∈ {1,2}.
4: For the pair 〈q1,0,q2,0〉 in δ, let φ0,0 be true and V1← V1∪{〈q1,0,q2,0,φ0,0〉}.
5: For each of the other state pairs 〈q1,i,q2, j〉 in δ, let φi, j be v1,k1 = v2,k1 ∧ . . . ∧ v1,kn =

v2,kn , where vk1 , . . . ,vkn are the common variables live at q1,i and q2, j; V1 ← V1 ∪
{〈q1,i,q2, j,φi, j〉}.

6: return V1.

that αh ' βh,1 ≤ h ≤ n+ 1. Now 〈q1,in ,q2, jn,φin, jn〉 ∈ S by the induction hypothe-

sis. So, in clause 2 in Definition 11, let q1,i = q1,in,σ1,i = σ1,in,σ1,k = sαn+1(σ1,in)

so that σ1,k = q1,k(v),η1 = αn+1,q2, j = q2, jn,σ2, j = σ2, jn . We notice that the an-

tecedent 〈q1,in,σ1,in〉;η1 〈q1,k,σ1,k〉 holds by the rhs of clause 2 in Definition 13;

the antecedents φin, jn(σ1,in,σ2, jn) and 〈q1,in ,q2, jn,φin, jn〉 ∈ S hold by the induction

hypothesis. Hence, the consequents of clause 2 in Definition 11 hold with σ2,l =

sβn+1(σ2, jn),η2 = βn+1; so from the fourth consequent, we have 〈q1,k,q2,l,φk,l〉 ∈ S. �

A member of the form 〈q1,i,q2, j,φi, j〉 in both type-I verification relation and sim-

ulation relation indicates that the data states at q1,i and q2, j satisfy the predicate φi, j.

The predicate φi, j involves the variables appearing in the two FSMDs as free vari-

ables. For path based equivalence checkers, this formula is identically true for the

pair of reset states; for any other pair of corresponding states 〈q1,i,q2, j〉, it is of the

form v1,k1 = v2,k1 ∧ . . . ∧ v1,kn = v2,kn , where vk1, . . . ,vkn are the common variables

live at q1,i and q2, j, which is precisely the criterion that must be satisfied for the two

paths to be declared equivalent by a path based equivalence checker. It is also to be

noted that presence of live uncommon variables always leads to path extension; hence,

at the corresponding state pairs, there is no live uncommon variable; consequently, the

uncommon variables do not appear in the φi, j’s.

For establishing the fact that the path based equivalence checking method leads

to a type-I verification relation which is a simulation relation between two FSMDs,

we use the following notation. Let the symbol vc represent the name vector compris-

4.3 From path extension based equivalence checker 73

ing the common variables in V1 ∩V2; the vector vc assumes values from the domain

(Σ1 ∪Σ2)|vc . Let v1c and v2c represent the name vectors over the common variables

after renaming the components of vc by respectively adding suffix 1 for FSMD M1 and

suffix 2 for FSMD M2. Thus, v1c (v2c) assumes values from the domain Σ1|vc (Σ2|vc).

We additionally use the symbol Li, j(vi), i ∈ {1,2}, to denote a vector containing only

those variables from vi that are live at state qi, j; the operation {e/v} is called a sub-

stitution; the expression κ{e/v} represents that all the occurrences of each variable

v j ∈ v in κ is replaced by the corresponding expression e j ∈ e simultaneously with

other variables. Let σ1,i ∈ q1,i(v1) and σ2, j ∈ q2, j(v2); then L1,i(σ1,i) represents the

values assumed by the live variables corresponding to the data state σ1,i at the control

state q1,i in M1; L2, j(σ2, j) is defined similarly.

Theorem 6. If a path based equivalence checker declares an FSMD M1 to be con-

tained in another FSMD M2, then there is a simulation relation between M1 and M2

corresponding to the state correspondence relation δ produced by the equivalence

checker. Symbolically,

∀〈q1,i,q2, j〉 ∈ Q1×Q2, δ(q1,i,q2, j)⇒∃φi, j S(q1,i,q2, j,φi, j).

Proof: We actually prove that ∀〈q1,i,q2, j〉 ∈ Q1×Q2, δ(q1,i,q2, j)⇒ ∃φi, j 〈q1,i,

q2, j,φi, j〉 ∈ V , the type-I verification relation, and then apply Theorem 5 to infer that

〈q1,i,q2, j,φi, j〉 ∈ S.

Construction of φi, j ’s and a verification relation V1: Algorithm 6 shows the steps to

obtain a verification relation V1 from the output of a path based equivalence checker.

The notation L1,i(v1c) = L2, j(v2c) implies that all the common variables that are live at

q1,i in M1 and q2, j in M2 assume the same values at these states; symbolically, ∀σ1,i ∈
q1,i(v1), ∃σ2, j ∈ q2, j(v2), L1,i(v1c){σ1,i|v1c/v1c}= L2, j(v2c){σ2, j|v2c/v2c}. (Algorithm

6 depicts this equality more elaborately as a conjunction of equalities of the corre-

sponding components of the vectors L1,i(v1c) and L2, j(v2c).) Now, we prove that the

verification relation V1 constructed in Algorithm 6 is indeed a type-I verification rela-

tion, i.e., the relation V1 conforms with Definition 13.

Consider any 〈q1,i,q2, j,φi, j〉 ∈V1. The triple 〈q1,i,q2, j,φi, j〉 must have been put in

V1 either in step 4 (case 1) or in step 5 (case 2).

For case 1, q1,i = q1,0, q2, j = q2,0 and φi, j = true. From clause 1 of Definition 13,

〈q1,0,q2,0, true〉 ∈ V .

For case 2, from step 5 of Algorithm 6, it follows that 〈q1,i,q2, j〉 ∈ δ and L1,i(v1c) =

74 Chapter 4 Deriving Bisimulation Relations

L2, j(v2c). From Definition 6 of δ, it follows that there exists a sequence of config-

urations of M1 of the form 〈q1,0,σ1,0〉
α1−−−� 〈q1,i1 ,σ1,i1〉

α2−−−� 〈q1,i2,σ1,i2〉
α3−−−�

· · ·
αn−−−� 〈q1,in = q1,i,σ1,in = σ1,i〉, where α1,α2, . . . ,αn ∈ P1, and a sequence of con-

figurations of M2 of the form 〈q2,0,σ2,0〉
β1−−−� 〈q2, j1,σ2, j1〉

β2−−−� 〈q2, j2,σ2, j2〉
β3−−−�

· · ·
βn
−−−� 〈q2, jn = q2, j,σ2, jn = σ2, j〉, where β1,β2, . . . ,βn ∈ P2, such that αh ' βh and

〈q1,ih,q2, jh〉 ∈ δ,1 ≤ h ≤ n. Hence, from step 5 of Algorithm 6, 〈q1,ih ,q2, jh,φih, jh〉 ∈
V1,1≤ h≤ n. We show that 〈q1,ih ,q2, jh,φih, jh〉 ∈ V ,1≤ h≤ n, by induction on h.

Basis (h = 1): Let us consider the rhs of the biconditional (⇔) in clause 2 of Defi-

nition 13 with q1,k = q1,i1 and q2,l = q2, j1 . Let q1,i = q1,0; the first conjunct q1,i �

q1,i1 ∈ P1 holds because q1,0 � q1,k = α1 ∈ P1. The second conjunct holds with q1,i =

q1,0,q2, j = q2,0, q2,0 � (q2,k = q2, j1) = β1 ∈ P2 and α1 ' β1 and 〈q1,0,q2,0,φ0,0〉 ∈ V
from clause 1 of Definition 13. Hence, the lhs of the biconditional in clause 2 of Def-

inition 13 holds yielding 〈q1,i1,q2, j1,φi1, j1〉 ∈ V .

Induction hypothesis: Let 〈q1,ih ,q2, jh,φih, jh〉 ∈ V ,1≤ h≤ m < n.

Induction step (h = m+ 1): Let q1,k = q1,im+1,q2,l = q2, jm+1 in clause 2 of Defini-

tion 13. From the rhs of the biconditional in clause 2, let q1,i = q1,im; the first conjunct

in the rhs namely, q1,i � q1,im+1 = αm+1 ∈ P1, holds with q1,i = q1,im . In the second

conjunct of the rhs, with q1,i = q1,im, the antecedent q1,i � q1,k = q1,im � q1,im+1 =

αm+1 ∈ P1 holds. In the consequent of this conjunct, let q2, j = q2, jm; we find q2, j �

q2,l = q2, jm � q2, jm+1 = βm+1 ∈ P2 holds; αm+1 ' βm+1 holds and 〈q1,i,q2, j,φi, j〉 =
〈q1,im,q2, jm,φim, jm〉 ∈ V by induction hypothesis. So, the rhs of the biconditional

holds. Hence, the lhs holds yielding 〈q1,im+1,q2, jm+1,φim+1, jm+1〉 ∈ V . �

Note that the path extension based equivalence checker ensures M1 vM2 first and

then M2vM1. In the second step, it does not have to change the set δ of corresponding

state pairs constructed during the first step. Hence, the simulation relation V1 obtained

from Algorithm 6 will be a bisimulation relation too by Definition 12.

It is important to note that as per Definition 11 of simulation relation, there is no

restriction on the end states of execution sequences. Algorithm 6, however, produces

a bisimulation relation comprising triples for only the corresponding states. This does

not impair generality because if one is interested in enhancing the bisimulation relation

by incorporating triples for some control states other than corresponding states, one

may easily do so by applying Dijkstra’s weakest precondition computation starting

from the corresponding states appearing immediately next to one’s states of choice

4.4 From symbolic value propagation based equivalence checker 75

in the control flow graph of FSMD. An analogous situation arises in Kundu et al.’s

method described in [103, 104], where the bisimulation relation produced comprises

triples only for the pairs of interest which are basically pairs of control states, one from

the specification and the other from the implementation (similar to our corresponding

states).

4.4 Deriving simulation relation from the output of a

symbolic value propagation based equivalence checker

The basic method of symbolic value propagation [22] consists in identifying the mis-

matches in the (symbolic) values of the live variables at the end of two paths taken

from two different FSMDs; if mismatches in the values of some live variables are

detected, then the variable values (stored as a vector) are propagated through all the

subsequent path segments. Repeated propagation of values is carried out until an

equivalent path or a final path segment ending in the reset state is reached. In the latter

case, any prevailing discrepancy in values indicates that the original and the trans-

formed behaviours are not equivalent; otherwise they are. Note that the conditionally

corresponding (C-corresponding) states are captured by the relation δc (in contrast to

the (unconditional) state correspondence relation δ).

It has already been mentioned in the previous chapter that paths cannot be extended

beyond a loop by definition and therefore pure path based approaches fail in the face

of code motions across loops; the primary motivation behind developing symbolic

value propagation based technique was to overcome this limitation. So, let us revisit

the example shown in Figure 3.3 on page 41 which exhibits a case of code motion

across loop. In this example, the verification relation tuple obtained for the state pair

〈q1,1,q2,1〉 is 〈q1,1,q2,1,φ1,1〉, where φ1,1 is

∃t1′1, t2′1 ∃t1′2, t2′2 [x1 = x2 ∧ i1 = i2 ∧N1 = N2 ∧ t11 = t12 ∧ t21 = t22 ∧ y1 = t1′1−
t2′1 ∧ h2 = t1′2 + t2′2] where the quantified variables t1′1, t2

′
1 represent the symbolic

values of the variables t11, t21 at q1,0 and t1′2, t2
′
2 represent the symbolic values of

the variables t12, t22 at q2,0 as captured by the propagated vectors for this pair of

states. It is important to note that the loop q1,1 � q1,1 is executed as many times

in M1 as the loop q2,1 � q2,1 in M2 and the above mentioned relation is maintained

76 Chapter 4 Deriving Bisimulation Relations

between the data states at 〈q1,1,q2,1〉 across all these executions (zero or more times).

To ensure that the two loops in the two FSMDs are executed equal number of times, the

conditions of execution of the loops must be identical; thus, obviously, no mismatched

variable appears in the condition of execution of either of the loops.

The above discussion exhibits that in the presence of code motions across loops,

establishing a verification relation to be a simulation relation would necessitate mov-

ing through several path segments with some of them arising from a loop. Hence,

we resort to the level of walks which are sequences of states and intermediary edges

having possible repetitions of states (which mark the entry/exit of a loop) as defined

below.

Definition 14 (Walk). For a set P of paths of an FSMD M, a walk between two

states qi and qk of M, represented as qi ;P qk (= ξ, say), is a finite sequence of

distinct paths of P of the form 〈α1 : qi � qm1 ,α2 : qm1 � qm2, . . . ,αl+1 : qml � qk〉;
the condition of execution of a walk ξ is given by Rξ = Rα1(v) ∧ Rα2(sα1(v)) ∧
Rα3(sα2(sα1(v))) ∧ . . . ∧ Rαl+1(sαl(sαl−1 . . . (sα1(v)) . . .)); the functional transforma-

tion sξ is given by sαl+1(sαl . . .(sα1(v)) . . .) and the output list θξ is given by the con-

catenation of the following output lists of the individual constituent paths θα1(v),

θα2(sα1(v)), θα3(sα2(sα1(v))), . . ., θαl+1(sαl(sαl−1 . . . (sα1(v)) . . .)); the latter two path

characterizations together comprise rξ, i.e., rξ = 〈sξ,θξ〉.

Definition 15 (Equivalence of Walks). Two walks ξ and ζ are said to be computation-

ally equivalent, denoted as ξ' ζ, iff Rξ ≡ Rζ and rξ = rζ.

Next we re-define the notion of corresponding states based on equivalent walks

rather than paths as given in the earlier Definition 6.

Definition 16 (Corresponding States). Let M1 = 〈Q1,q1,0, I,V1,O,τ1,h1〉 and M2 =

〈Q2,q2,0, I,V2,O, τ2,h2〉 be two FSMDs having identical input and output sets, I and

O, respectively.

1) The respective reset states q1,0 and q2,0 are corresponding states and a non-reset

state does not have correspondence with a reset state.

2) If q1,i ∈Q1 and q2, j ∈Q2 are corresponding states and there exist q1,k ∈Q1 and

q2,l ∈ Q2 such that, for some walk ξ from q1,i to q1,k in M1, there exists a walk

4.4 From symbolic value propagation based equivalence checker 77

−/x⇐ 0,y⇐ 20

q2, j

q2,n

q2,l′

¬(x < N)/y⇐ y+2

(b) M2

q2,l

−/z⇐ x+ y

x < N/x⇐ x+1

¬(x < N)/z⇐ x+ y

−/x⇐ 0,y⇐ 18

q1,k

(a) M1

x < N/x⇐ x+1,
y⇐ y+4 q1,m

q1,i

Figure 4.2: An example of non-equivalent programs.

ζ from q2, j to q2,l in M2 such that ξ ' ζ, then q1,k and q2,l are corresponding

states (note that q1,k and q2,l must both be either reset states or non-reset states).

In addition to the set of corresponding states δ, we also maintain the set of cor-

responding loop states to store pairs of the entry/exit states of those loops which are

reached with loop invariant propagated vectors, such as 〈q1,1,q2,1〉 in Figure 3.3; let

the set of such corresponding loop states be denoted as δ̂.

Let us now briefly revisit the path extension based equivalence checking method

as mentioned in Section 4.3. In this method, we had a path cover P of an FSMD

M such that every computation of M could be looked upon as a concatenation of

paths (possibly, with repetitions) from the path cover P. Note that in the present

scenario, we cannot define a similar notion of walk cover since a walk cover may have

to accommodate infinite number of walks to capture arbitrary number of executions

of loops. The walks that are considered by our symbolic value propagation based

equivalence checker does not allow for repetition of paths (as given in Definition 14);

if a walk contains any subsequence (of paths) with identical start and end states, then

that subsequence represents a loop. Let ξ be a walk in FSMD M of the form ξpξlξs

with a prefix sequence ξp (“p” for prefix), a sequence ξl (“l” for loop) with identical

start and end state and a suffix sequence ξs (“s” for suffix); we call a walk such as

ξ as a single loop walk (SLW). Walks containing SLWs where the loop segments are

entered with mismatches in variables can have equivalent walks in the other FSMD

provided the mismatches do not change over the loop iterations as illustrated below.

In Figure 4.2(a), let the path q1,i � q1,m be ξp, the loop q1,m � q1,m be ξl and

the path q1,m � q1,k be ξs. Similarly, in Figure 4.2(b), let the path q2, j � q2,n be ζp,

78 Chapter 4 Deriving Bisimulation Relations

the loop q2,n � q2,n be ζl and the path q2,n � q2,l be ζs. It is important to note that

the SLWs ξpξlξs and ζpζlζs are equivalent having identical condition of execution

Rξ ≡ Rζ ≡ (0 < N)∧¬(1 < N) and identical data transformations sξ = sζ = {x⇐
1,y⇐ 22,z⇐ 23} for N = 1. However, for any integer value of N other than 1,

the computations of the two programs will be different. For example, for N = 5, the

source program will assign the value 43 to the variable z, whereas, the transformed

program will assign the value 27 to z.

Note that the symbolic value propagation based equivalence checker identifies two

such SLWs, ξ of M1 and ζ of M2, as equivalent (or more specifically, starting with the

corresponding states 〈ξs,ζs〉, identifies 〈ξ f ,ζ f 〉 as corresponding states) if there are

propagation vectors γ1 and γ2, say, at ξ
f
p and ζ

f
p respectively depicting mismatches

over ξp and ζp which satisfy the following three conditions:

(i) γ1 and γ2 disappear (i.e., all mismatches are compensated for) over the segments

ξ
f
p(= ξs

s) to ξ
f
s and ζ

f
p(= ζs

s) to ζ
f
s ,

(ii) γ1 and γ2 remain invariant over the loops ξl and ζl , respectively, and

(iii) the conditions of execution ξl and ζl are identical (involving no variable which

has mismatch as per γ1 and γ2).

Conditions (i) and (ii) indicate that code motions may have taken place from ξp

to ξs across the loop ξl , or from ζp to ζs across the loop ζl or both. Condition (iii)

implies that the loops ξl and ζl are executed identical number of times. Only under

these conditions, ξ ' ζ ⇒ ξp(ξl)
mξs ' ζp(ζl)

mζs, ∀m ≥ 0, where m represents the

number of times the loops ξl and ζl are iterated. Stated in words, the loop invariance

of the propagated vectors at the entry/exit states of the loop preserves equivalence

of SLWs under pumping of the loops equal number of times. The following lemma

supports the observation.

Lemma 1 (Pumping Lemma for SLWs). Let ξ = ξpξlξs be an SLW of M1 and ζ =

ζpζlζs be an SLW of M2 such that 〈ξs,ζs〉 ∈ δ; let γ1 and γ2 be the propagation vectors

over ξp and ζp, respectively. If γ1 and γ2 are loop invariant over ξl and ζl , respectively,

then ξ' ζ ⇒ ξp(ξl)
mξs ' ζp(ζl)

mζs, ∀m≥ 0.

Proof: The constraint 〈ξs,ζs〉 ∈ δ implies that all the (common) live variables must

have identical values at ξs in M1 and ζs in M2. Let v be a variable whose definitions

mismatch at ξ
f
p(= ξs

l) and ζ
f
p(= ζs

l). Since the propagated vectors γ1 and γ2 are loop

4.4 From symbolic value propagation based equivalence checker 79

invariant, the variables which have the mismatches at ξs
l and ζs

l as well as those which

appear in their symbolic expression values are not assigned any new values and the

other variables are transformed identically. In short, therefore, sξl
= sζl

. Also, the con-

ditions of execution of the loops, Rξl
and Rζl

, are equivalent and do not involve any

variables which have mismatches at ξs
l and ζs

l . Under this scenario, the loops ξl and

ζl will iterate identical number of times, sm
ξl
(sξp(v1)) and sm

ζl
(sζp(v2)) will have the

same mismatch and Rξl
(sm

ξl
(sξp(v1))) ≡ Rζl

(sm
ζl
(sζp(v2))),∀m ≥ 0. It further implies

that mismatched variables, such as v, must not have been output in ξl and ζl , and also

not used in determining the value of any other variable. Finally, the antecedent ξ' ζ

implies that the mismatch in definitions must have disappeared at 〈ξ f ,ζ f 〉; hence,

Rξp(v1)∧Rξl
(sξp(v1))∧Rξs(sξl

(sξp(v1)))≡ Rζp(v2)∧Rζl
(sζp(v2))∧Rζs(sζl

(sζp(v2)))

and sξs(sξl
(sξp(v1))) = sζs(sζl

(sζp(v2))). Therefore, from Rξl
≡Rζl

and sξl
= sζl

, it fol-

lows that Rξp(v1)∧Rξl
(sξp(v1))∧Rξl

(sξl
(sξp(v1)))∧Rξs(sξl

(sξl
(sξp(v1))))≡ Rζp(v2)∧

Rζl
(sζp(v2))∧Rζl

(sζl
(sζp(v2)))∧Rζs(sζl

(sζl
(sζp(v2)))) and sξs(sξl

(sξl
(sξp(v1)))) =

sζs(sζl
(sζl

(sζp(v2)))); repetition of the argument m−1 times gives Rξp(v1)∧Rξl
(sm−1

ξl
(

sξp(v1)))∧ Rξs(s
m
ξl
(sξp(v1))) ≡ Rζp(v2) ∧ Rζl

(sm−1
ζl

(sζp(v2))) ∧ Rζs(s
m
ζl
(sζp(v2))) and

sξs(s
m
ξl
(sξp(v1))) = sζs(s

m
ζl
(sζp(v2))); thus, ξp.(ξl)

m.ξs ' ζp.(ζl)
m.ζs,m ≥ 1. Again

from the invariance of γ1 over the loop ξl and that of γ2 over the loop ζl and the

antecedent ξ ' ζ, it follows that Rξp(v1)∧Rξs(sξp(v1)) ≡ Rζp(v2)∧Rζs(sζp(v2)) and

sξs(sξp(v1)) = sζs(sζp(v2)). Thus, ξ' ζ ⇒ ξp(ξl)
mξs ' ζp(ζl)

mζs, ∀m≥ 0. �

Henceforth, the term SLW is used to mean an SLW that satisfies the property of

loop invariance, if not explicitly stated otherwise. With this concept of SLWs, a walk

cover can now be defined as follows.

Definition 17 (Walk Cover of an FSMD). A finite set of walks W = {ξ1,ξ2, . . . ,ξn}
(for a path cover P) is said to be a walk cover of an FSMD M if any computation of M

can be represented as a sequence of the form ρ1ρ2 . . .ρk which satisfies the following

conditions:

(i) ∀i,1≤ i≤ k,

(a) ρi ∈W, or

(b) ∃ξ ∈W of the form ξpξlξs such that ρi = ξp or ρi = ξl or ρi = ξs and if ρi

occurs in the computation consecutively more than once, then ρi = ξl ,

(ii) ρs
1 and ρ

f
k are the reset state of M.

80 Chapter 4 Deriving Bisimulation Relations

Now we have the following theorem which validates our symbolic value propaga-

tion based equivalence checking method around walks as given in Definition 14.

Theorem 7. An FSMD M1 is contained in another FSMD M2 (M1 vM2), if there ex-

ists a finite walk cover W1 = {ξ1,ξ2, . . . ,ξl1} of M1 for which there exists a set of walks

W2 = {ζ1,ζ2, . . . ,ζl2} of M2 such that for any corresponding state pair 〈q1,i,q2, j〉, for

any walk ξm ∈W1 emanating from q1,i, there exists a walk ζn ∈W2 emanating from

q2, j such that ξm ' ζn.

Proof: From Definition 2, M1 v M2, if for any computation µ1 of M1 on some

inputs, there exists a computation µ2 of M2 on the same inputs such that µ1 ' µ2.

Since W1 is a walk cover of M1 (as per Definition 17), the computation µ1 of M1 can

be represented in terms of walks from W1 starting from the reset state q1,0 and ending

again at this reset state of M1. Consider a computation µ1 of the form [ξk1ξk2 . . .ξkt]

where ξki ∈W1,∀i,1≤ i≤ t. We have to show that a computation µ2 exists in M2 such

that µ1 ' µ2.

In general, µ1 may contain multiple iterations of various loops in M1. Note that

cut-point introduction rules ensure that loops have identical entry and exit state. We

may have the following two cases:

Case 1: The entry state of a loop l1, say, in M1 has correspondence δ with the entry

state of some loop l2 in M2. Under this case, l1 and l2 are designated as walks in the

two FSMDs as per Definition 16.

Case 2: The entry state of a loop in M1 has no correspondence δ with the entry state of

some loop in M2; this happens when there is mismatch of values of some variables that

resulted either prior to or within the corresponding loop segments in the two FSMDs.

If the mismatch originates in the loop segment then the hypothesis of the theorem does

not hold. So we only consider the scenarios where the mismatch originates prior to

entry to the corresponding loop segments. The existence of walk cover W1 ensures

that the mismatch originated in some segment leading to the loop remains invariant

over the loop and disappears over the segment following the loop. In other words, W1

contains a walk of the form ξpξlξs.

Before we can mechanically obtain a computation µ2 of M2, such that µ1 ' µ2, it

is to be noted that µ1 may contain multiple iterations (or zero iteration) of a loop ξl

over which propagated vectors, if any, have remained invariant; subsequences of the

4.4 From symbolic value propagation based equivalence checker 81

(a) M1

q1,0

q1,1

q1,2

q1,3

x⇐ y

(b) M2

q2,0

q2,1

q2,2

q2,3

x⇐ y

Figure 4.3: An example of code motion across multiple loops.

form ξp(ξl)
dξs,d ≥ 0, are replaced by the SLW ξpξlξs. After all such substitutions

have been carried out, let the modified computation µ′1 be [ξi1ξi2 . . .ξit′].

The reset states q1,0 of M1 and q2,0 of M2 must be corresponding states by clause

1 of Definition 16. Therefore, it follows from the hypothesis that a walk ζ j1 exists

in W2 such that ξi1 ' ζ j1; if ξi1 is an SLW, then so shall be ζ j1; otherwise, both will

be simple walks (without loops). Thus, the states ξ
f
i1 and ζ

f
j1 must again be corre-

sponding states by clause 2 in Definition 16. By repetitive applications of the above

argument, it follows that there exists a concatenated sequence of paths ζ j1 . . .ζ jt such

that ξik ' ζ jk ,1≤ k ≤ t. What remains to be proved for [ζ j1ζ j2 . . .ζ jt] to be a compu-

tation of M2 is that ζ
f
jt = q2,0. Let ζ

f
jt 6= q2,0; now 〈ξ f

it ,ζ
f
jt 〉, i.e., 〈q1,0,ζ

f
jt 〉 must be a

corresponding state pair. However, by Definition 16, a non-reset state cannot have cor-

respondence with a reset state. Consequently, ζ
f
jt must be q2,0 and thus [ζ j1ζ j2 . . .ζ jt]

is a computation, µ′2 say, and µ′1 ' µ′2. In order to obtain the intended computation

µ2 from µ′2, we introduce in µ′2 as many iterations of the loop ξl as there are for the

equivalent loop ζl in µ1, i.e., we essentially perform a substitution on µ′2 which is just

the reverse of the substitution that was applied on µ1 to obtain µ′1. It follows from

Lemma 1, that the newly obtained µ2 is equivalent to µ1. �

It is crucial to note that our symbolic value propagation based equivalence checker

can establish equivalence even when some code motion has taken place across mul-

tiple loops as shown in Figure 4.3 (considering x has not been output or used and y

has not been updated in the paths q1,1 � q1,1, q1,1 � q1,2 and q1,2 � q1,2). Thus,

although the formalism discussed so far deals with single loop walks, it can be easily

82 Chapter 4 Deriving Bisimulation Relations

extended to accommodate multiple loop walks; for this, the definition of walk cover

(Definition 17), its corresponding Lemma 1, Theorem 7 and their proofs can be suit-

ably extended. Note that the definition of walk given in Definition 14 requires no

modification to incorporate the notion of multiple loop walks.

Next, to establish that the symbolic value propagation based equivalence checker

yields a simulation relation, we define, in the following, another verification relation

accommodating the notion of walks (as given in Definition 14).

Definition 18 (Type-II Verification Relation). A type-II verification relation V ′ for two

FSMDs M1 = 〈Q1,q1,0, I,V1,O,τ1,h1〉 and M2 = 〈Q2,q2,0, I,V2,O,τ2,h2〉 is a verifi-

cation relation which satisfies the following two clauses:

1. V ′(q1,0,q2,0, true), and

2. ∀q1,k ∈ Q1, q2,l ∈ Q2
[

V ′(q1,k,q2,l,φk,l)⇔
∃q1,i ∈ Q1(q1,i ;P1 q1,k) ∧
∀q1,i ∈ Q1

{
q1,i ;P1 q1,k = ξ, say,⇒

∃q2, j ∈ Q2
(

q2, j ;P2 q2,l = ζ, say, ∧ ξ' ζ ∧ V ′(q1,i,q2, j,φi, j)
) }]

.

Note that if we allow all walks to be only single paths from the path cover, then

Definition 18 boils down to Definition 13, i.e., the latter is a specific case of the more

general Definition 18.

Theorem 8. The verification relation V ′ for two FSMDs M1,M2 is a simulation rela-

tion for M1,M2, i.e., ∀〈q1,i,q2, j,φi, j〉,〈q1,i,q2, j,φi, j〉 ∈ V ′⇒ 〈q1,i,q2, j,φi, j〉 ∈ S.

Proof: For the pair of reset states, 〈q1,0,q2,0, true〉 is in V ′ and also in S by the

respective first clauses in Definition 18 and Definition 11. For 〈q1,k,q2,l,φk,l〉 ∈ V ′,
where q1,k 6= q1,0 and q2,l 6= q2,0, by application of clause 2 in Definition 18 in the

forward direction (i.e., along⇒) m times, m ≥ 1, we may conclude that there exists

a sequence of walks ξ1,ξ2, . . . ,ξm, where the paths constituting ξh,1 ≤ h ≤ m, all

belong to P1 and another sequence of walks ζ1,ζ2, . . . ,ζm, where the paths constituting

ζh,1 ≤ h ≤ m, all belong to P2 such that ξs
1 = q1,0,ξ

f
m = q1,k,ζ

s
1 = q2,0,ζ

f
m = q2,l and

ξh' ζh,1≤ h≤m; also the corresponding sequence of configurations 〈q1,0,σ1,0〉;ξ1

〈q1,i1,σ1,i1〉;ξ2 · · ·;ξm 〈q1,im = q1,k,σ1,im = σ1,k〉 and 〈q2,0,σ2,0〉;ζ1 〈q2, j1,σ2, j1〉
;ζ2 · · ·;ζm 〈q2, jm = q2,l,σ2, jm = σ2,l〉 satisfy the property that 〈q1,ih,q2, jh,φih, jh〉 ∈
V ′,1 ≤ h ≤ m. We shall prove that 〈q1,ih,q2, jh,φih, jh〉 ∈ S, for all h,1 ≤ h ≤ m, holds

by induction on h.

4.4 From symbolic value propagation based equivalence checker 83

Basis case (h = 1): In this case, there must exist a single walk q1,0 ;P1 q1,k = ξ1

in M1 and a walk q2,0 ;P2 q2,l = ζ1 in M2 such that ξ1 ' ζ1. Let the walk ξ1

consist of the paths 〈α1
1,α

2
1, . . . ,α

t
1〉 from P1; similarly, let ζ1 consist of the paths

〈β1
1,β

2
1, . . . ,β

t
1〉 from P2. Thus, we have σ1,k = sαt

1
(s

α
t−1
1

. . .(s
α1

1
(σ1,0)) . . .) and σ2,l =

sβt
1
(s

β
t−1
1

. . .(s
β1

1
(σ1,0)) . . .) from Definition 14. So, in clause 2 of Definition 11, let

q1,i = q1,0,σ1,i = σ1,0,σ1,k = sαt
1
(s

α
t−1
1

. . .(s
α1

1
(σ1,0)) . . .) so that σ1,k ∈ q1,k(v),η1 =

ξ1,q2, j = q2,0,σ2, j = σ2,0. We notice that the antecedents of clause 2 in Definition 11

hold; specifically, the antecedent 〈q1,0,σ1,0〉;η1 〈q1,k,σ1,k〉 holds by the right hand

side (rhs) of clause 2 in Definition 18; the antecedent φ0,0(σ1,0,σ2,0) holds since φ0,0

is identically true; 〈q1,0,q2,0,φ0,0〉 ∈ S by clause 1 in Definition 11. Hence, the conse-

quents of clause 2 in Definition 11 hold with σ2,l = sβt
1
(s

β
t−1
1

. . .(s
β1

1
(σ1,0)) . . .),η2 =

ζ1; so from the fourth consequent, we have 〈q1,k,q2,l,φk,l〉 ∈ S.

Induction hypothesis: Let 〈q1,k,q2,l,φk,l〉 ∈ S hold whenever the states q1,k in Q1 and

q2,l in Q2 are reachable from q1,0 and q2,0, respectively, through sequences of length

n of pairwise equivalent walks from P1 and P2.

Induction step: Let the state q1,k be reachable from q1,0 through the sequence q1,0 ;
ξ1

q1,i1 ;ξ2 · · · ;ξn q1,in ;ξn+1 q1,k in M1 and the state q2,l be reachable from q2,0

through the sequence q2,0 ;ζ1 q2, j1 ;ζ2 · · · ;ζn q2, jn ;ζn+1 q2,l in M2 such that

ξh ' ζh,1 ≤ h ≤ n+ 1. Now 〈q1,in,q2, jn,φin, jn〉 ∈ S by the induction hypothesis. Let

ξn+1 consist of the paths 〈α1
n+1,α

2
n+1, . . . ,α

t ′
n+1〉 from P1; similarly, let ζn+1 consist of

the paths 〈β1
n+1,β

2
n+1, . . . ,β

t ′
n+1〉 from P2. So, in clause 2 in Definition 11, let q1,i =

q1,in,σ1,i = σ1,in,σ1,k = s
αt′

n+1
(s

α
t′−1
n+1

. . .(s
α1

n+1
(σ1,in)) . . .) so that σ1,k = q1,k(v),η1 =

ξn+1,q2, j = q2, jn ,σ2, j = σ2, jn . We notice that the antecedent 〈q1,in,σ1,in〉;η1 〈q1,k,

σ1,k〉 holds by the rhs of clause 2 in Definition 18; the antecedents φin, jn(σ1,in ,σ2, jn)

and 〈q1,in ,q2, jn,φin, jn〉 ∈ S in clause 2 in Definition 18 hold by the induction hypothe-

sis. Hence, the consequents of clause 2 in Definition 11 hold with σ2,l = s
βt′

n+1
(s

β
t′−1
n+1

. . .

(s
β1

n+1
(σ2, jn)) . . .),η2 = ζn+1; so from the fourth consequent, we have 〈q1,k,q2,l,φk,l〉 ∈

S. �

The following theorem captures the fact that symbolic value propagation based

equivalence checking leads to a simulation relation between two FSMDs.

Theorem 9. If a symbolic value propagation based equivalence checker declares an

FSMD M1 to be contained in another FSMD M2 for a path cover P1 of M1, then there is

a simulation relation between M1 and M2 corresponding to the state correspondence

relation δ produced by the equivalence checker. Symbolically,

84 Chapter 4 Deriving Bisimulation Relations

Algorithm 7 deriveSimRelVR2 (FSMD M1, FSMD M2, Set δ, Set δ̂, Set ϒ)
Inputs: Two FSMDs M1 and M2,

the sets δ and δ̂ of corresponding state pairs and corresponding loop state pairs,

the set of ϒk,l’s, ϒk,l = {〈ϑ1,k,ϑ2,l〉| 〈q1,k,q2,l〉 ∈ δc}, where ϑi, j = 〈C j,〈e1, . . . ,e|V0∪V1|〉〉 rep-

resents a propagated vector at state qi, j;

the last three arguments are obtained from M1 and M2 by the symbolic value propagation based

equivalence checker.

Outputs: Relation V2 = {〈q1,i,q2, j,φi, j〉|〈q1,i,q2, j〉 ∈ δ},
relation V̂ = {〈q1,i,q2, j,φi, j〉|〈q1,i,q2, j〉 ∈ δ̂}.

1: Let the relations V2 and V̂ be empty.

2: Perform live variable analyses on M1 and M2 and compute the set of live variables for

each of the states that appears as a member of the state pairs in δ and δ̂.

3: For the pair 〈q1,0,q2,0〉 in δ, let φ0,0 be true and V2← V2∪{〈q1,0,q2,0,φ0,0〉}.
4: Rename each v j ∈Vi as vi, j, i ∈ {1,2}.
5: For each of the other state pairs 〈q1,i,q2, j〉 in δ, let φi, j be v1,k1 = v2,k1 ∧ . . . ∧ v1,kn =

v2,kn , where vk1 , . . . ,vkn are the common variables live at q1,i and q2, j; V2 ← V2 ∪
{〈q1,i,q2, j,φi, j〉}.

6: Rename each v j ∈ Vi as vi, j, i ∈ {1,2} in the pairs in ϒk,l’s, with i = 1(2) for the first

(second) member of a pair.

7: *For each state pair 〈q1,i,q2, j〉 in δ̂ and corresponding ϒi, j,

φi, j← ∃v′1,h1
, ..,v′1,hx

∃v′2,h1
, ..,v′2,hy

[
m∧

g=1
v1,hg = v2,hg ∧

x∧
g=m+1

v1,hg = e1,hg(v
′
1,h1

, ..,v′1,hx
) ∧

y∧
g=m+1

v2,hg = e2,hg(v
′
2,h1

, ..,v′2,hy
)],

where vh1 , . . . ,vhm are the common variables live at q1,i and q2, j that assume identical

values in both the FSMDs, v1,hm+1 , . . . ,v1,hx are the live common variables and uncommon

variables that assume the symbolic expression values e1,hm+1 , . . . ,e1,hx at q1,i in FSMD M1

and v2,hx+1 , . . . ,v2,hy are the live common variables and uncommon variables that assume

the symbolic values e2,hm+1 , . . . ,e2,hy at q2, j in FSMD M2 with mismatch in the common

variables among them; V̂ ← V̂ ∪{〈q1,i,q2, j,φi, j〉}.
8: return V2, V̂ .

*Note that the variables v1,h1 , ..,v1,hx ,v2,h1 , ..,v2,hy in φi, j are all free, i.e., implicitly universally

quantified when validity of φi, j is concerned.

4.4 From symbolic value propagation based equivalence checker 85

∀〈q1,i,q2, j〉 ∈ Q1×Q2, δ(q1,i,q2, j)⇒∃φi, j S(q1,i,q2, j,φi, j).

Proof: We actually prove that ∀〈q1,i,q2, j〉 ∈Q1×Q2, δ(q1,i,q2, j)⇒∃φi, j 〈q1,i,q2, j,

φi, j〉 ∈ V ′, the type-II verification relation, and then apply Theorem 8 to infer that

〈q1,i,q2, j,φi, j〉 ∈ S.

Construction of φi, j ’s and a verification relation V2: Algorithm 7 shows the steps to

obtain a simulation relation V2 from two FSMDs and the outputs of a symbolic value

propagation based equivalence checker for those FSMDs; the algorithm also outputs a

relation V̂ which is used subsequently for devising a checking algorithm for our bisim-

ulation relation. Note that V̂ also contains tuples of the form 〈q′1,i,q′2, j,φ′i, j〉, similar

to those of V2; however, while for a member 〈q1,i,q2, j,φi, j〉 ∈ V2, 〈q1,i,q2, j〉 ∈ δ and

φi, j involves equalities of the respective common live variables at q1,i and q2, j, for a

member 〈q′1,i,q′2, j,φ′i, j〉 ∈ V̂ , 〈q′1,i,q′2, j〉 belongs to δ̂ and φ′i, j comprises equalities of

two FSMD variables, if they match, and equalities of the mismatched variables with

their respective symbolic values, otherwise.

Now, we prove that the verification relation V2 constructed in Algorithm 7 is in-

deed a type-II verification relation, i.e., the relation V2 conforms with Definition 18.

Consider any 〈q1,k,q2,l,φk,l〉 ∈V2. The triple 〈q1,k,q2,l,φk,l〉must have been put in V2

either in step 3 (case 1) or in step 5 (case 2).

For case 1, q1,k = q1,0, q2,l = q2,0 and φk,l = true. From clause 1 of Definition 18,

〈q1,0,q2,0, true〉 ∈ V ′.
For case 2, from step 5 of Algorithm 7, it follows that 〈q1,k,q2,l〉 ∈ δ and L1,k(v1c) =

L2,l(v2c). From Definition 16 of δ, it follows that there exists a sequence of config-

urations of M1 of the form 〈q1,0,σ1,0〉;ξ1 〈q1,i1 ,σ1,i1〉;ξ2 〈q1,i2,σ1,i2〉;ξ3 · · ·;ξn

〈q1,in = q1,k,σ1,in = σ1,k〉, where ξ1,ξ2, . . . ,ξn ∈W1 comprising paths from P1 and

a sequence of configurations of M2 of the form 〈q2,0,σ2,0〉 ;ζ1 〈q2, j1,σ2, j1〉 ;ζ2

〈q2, j2 ,σ2, j2〉;ζ3 · · ·;ζn 〈q2, jn = q2,l,σ2, jn = σ2,l〉, where ζ1,ζ2, . . . ,ζn ∈W2 com-

prising paths from P2, such that 〈q1,ih,q2, jh〉 ∈ δ,1≤ h≤ n. Hence, from step 5 of Al-

gorithm 7, 〈q1,ih ,q2, jh,φih, jh〉 ∈ V2,1 ≤ h ≤ n. We show that 〈q1,ih,q2, jh,φih, jh〉 ∈ V ′,
for all h,1≤ h≤ n, by induction on h.

Basis (h = 1): Let us consider the rhs of the biconditional in clause 2 of Definition 18

with q1,k = q1,i1 and q2,l = q2, j1 . Let q1,i = q1,0; the first conjunct q1,i ;P1 q1,i1 holds

because q1,0 ;P1 q1,k = ξ1. The second conjunct holds with q1,i = q1,0,q2, j = q2,0,

q2,0 ;P2 (q2,k = q2, j1) = ζ1 and ξ1 ' ζ1 and 〈q1,0,q2,0,φ0,0〉 ∈ V ′ from clause 1 of

86 Chapter 4 Deriving Bisimulation Relations

Definition 18. Hence, the lhs of the biconditional in clause 2 of Definition 18 holds

yielding 〈q1,i1,q2, j1,φi1, j1〉 ∈ V ′.
Induction hypothesis: Let 〈q1,ih ,q2, jh,φih, jh〉 ∈ V ′,1≤ h≤ m < n.

Induction step (h=m+1): Let q1,k = q1,im+1 ,q2,l = q2, jm+1 in clause 2 of Definition 18.

From the rhs of the biconditional in clause 2, let q1,i = q1,im; the first conjunct in the

rhs namely, q1,i ;P1 q1,im+1 = ξm+1, holds with q1,i = q1,im . In the second conjunct of

the rhs, with q1,i = q1,im , the antecedent q1,i ;P1 q1,k = q1,im ;P1 q1,im+1 = ξm+1 holds.

In the consequent of this conjunct, let q2, j = q2, jm; we find q2, j ;P2 q2,l = q2, jm ;P2

q2, jm+1 = ζm+1 holds; ξm+1 ' ζm+1 holds and 〈q1,i,q2, j,φi, j〉 = 〈q1,im ,q2, jm ,φim, jm〉 ∈
V ′ by induction hypothesis. So, the rhs of the biconditional holds. Hence, the lhs

holds yielding 〈q1,im+1,q2, jm+1,φim+1, jm+1〉 ∈ V ′. �

If the symbolic value propagation based equivalence checker also finds that M2 v
M1, then it does so without changing δ and δ̂. Hence, the simulation relation V2

obtained from Algorithm 7 is a bisimulation relation because it conforms with Defini-

tion 12.

Similar to what has been mentioned in Section 4.3, Algorithm 7 also produces a

bisimulation relation comprising triples for only the corresponding states. This, how-

ever, does not impair generality because if one is interested in enhancing the bisimula-

tion relation by incorporating triples for some control states other than corresponding

states, one may easily do so by applying Dijkstra’s weakest precondition computation

starting from the corresponding states appearing immediately next to one’s states of

choice in the control flow graph of FSMD; however, if one’s states of choice lie within

a loop, then one should start from the next corresponding loop state pairs 〈q1,m,q2,n〉,
say, belonging to δ̂ and compute weakest precondition with respect to φm,n.

4.5 Conclusion

Both bisimulation relation based methods and path based equivalence checking ap-

proaches are prevalent in the literature on translation validation of programs. The

basic methodologies of these two approaches differ; the (conventional) bisimulation

relation based approach tries to construct a relation that serves as a witness of the

two programs being symbolically executed in an equivalent manner, whereas, the path

4.5 Conclusion 87

based approach tries to obtain path covers in the two FSMDs such that each path in

one is found to be equivalent with a path in the other and vice-versa. In this chapter,

we relate these two (apparently different) approaches by explaining how bisimula-

tion relations can be derived from the outputs of two types of path based equivalence

checkers namely, a path extension based checker and a symbolic value propagation

based checker. None of the bisimulation relation based approaches has been shown

to tackle code motions across loops; therefore, the present work demonstrates, for the

first time, that a bisimulation relation exists even under such a context when such code

motions are valid. Developing a unified framework that encompasses all the benefits

of these two approaches seems to be an interesting future work.

Chapter 5

Translation Validation of Code Motion
Transformations in Array-Intensive
Programs

5.1 Introduction

In Chapter 3, we have presented a symbolic value propagation based equivalence

checking for the FSMD model. A significant deficiency of this method is its inability

to handle an important class of programs, namely those involving arrays. The data

flow analysis for array-intensive programs is notably more complex than those in-

volving only scalars. To illustrate the fact, let us consider two sequential statements

a[i]⇐ 10 and a[j]⇐ 20. Now consider the scenario where i = j holds, in this case

the second statement qualifies as an overwrite, whereas in the complement scenario

of i 6= j, it does not. Unavailability of relevant information to resolve such relation-

ships between index variables may result in an exponential number of case analyses.

In addition, obtaining the condition of execution and the data transformation of a path

by applying simple substitution as outlined by Dijkstra’s weakest precondition com-

putation may become more expensive in the presence of arrays; conditional clauses

need to be associated depicting equality/non-equality of the index expressions of the

array references in the predicate as it gets transformed through the array assignment

statements in the path.

89

90 Chapter 5 Code Motion Transformations in Array-Intensive Programs

We first address the problem of deriving a succinct representation of expressions

involving arrays so that the computation of the conditions and data transformations

of paths can avoid case analysis. Towards this, we have borrowed the well-known

McCarthy’s read and write functions [120] (originally known as access and change,

respectively) to represent assignment and conditional statements involving arrays that

easily captures the sequence of transformations carried out on the elements of an array

and also allows uniform substitution policy for both scalars and array variables. We

then enhance the symbolic value propagation based method described in Chapter 3

to propagate the values assumed by the array variables and their corresponding index

variables in some path to its subsequent paths; a special rule for the propagation of

index variables is also incorporated.

The chapter is organized as follows. Section 5.2 introduces the finite state machine

with datapath having arrays (FSMDA) model, which is an extension on the FSMD

model equipped to efficiently handle arrays. The computation of the characteristic

formula of a path is presented in Section 5.3. An advancement of the existing normal-

ization technique to represent expressions involving arrays is given in Section 5.4. The

overall verification method, illustrated with an example, can be found in Section 5.5.

A theoretical analysis of the method is given in Section 5.6. Section 5.7 contains the

experimental results along with a brief discussion on the current limitations of our

method. The chapter is concluded in Section 5.8.

5.2 The FSMDA model

An FSMDA is formally defined as an ordered tuple 〈Q,q0, I,V,O,τ : Q× 2S → Q,

h : Q× 2S → U〉, where Q is the finite set of control states, q0 is the reset state, I

is the set of input variables, V is the set of storage variables, O is the set of output

variables, τ is the state transition function, h is the update function of the output and the

storage variables, U represents a set of storage and output assignments of arithmetic

expressions and the set S represents a set of status signals as relations between two

arithmetic expressions. The sets I, V and O, unlike FSMD, are further partitioned into

subsets (Is, Ia), (Vs, Va, Vi) and (Os, Oa) respectively; suffix s stands for scalar, a for

array and i for index. Index variables are basically “scalar” variables that occur in

some index expression of some array variable.

5.3 Characteristic tuple of a path 91

a[i] == v/a[i]⇐ f (v)

−/x⇐ g(u)

−/a[i]⇐ a[j]+ x

−/x⇐ a[i]+ x

qn

qn+1

qn+2

qn+3

qn+4

{a⇐ wr(a, i, rd(a, j)+ x),

{a⇐ wr(a, i, rd(a, j)+g(u)),

{a⇐ wr(wr(a, i, f (v)), i, rd(wr(a, i, f (v)), j)+g(u)),

{x⇐ rd(a, i)+ x}

backward

x⇐ rd(wr(wr(a, i, f (v)), i, rd(wr(a, i, f (v)), j)+g(u)), i)+g(u)}

x⇐ rd(wr(a, i, rd(a, j)+g(u)), i)+g(u)}

x⇐ rd(wr(a, i, rd(a, j)+ x), i)+ x}

substitution

Figure 5.1: Computing characteristic tuple of a path.

5.3 Characteristic tuple of a path

An FSMDA, like an FSMD, can be fragmented into a set of paths by introducing

cut-points in it to cut each loop; each path originates from a cut-point and ends in

a cut-point. In this work, the reset state and all those states from which multiple

outgoing transitions occur have been considered as the cut-points for an FSMDA. A

path β is characterized by a tuple 〈Rβ,sβ,θβ〉, where Rβ is the condition of execution,

sβ is the data transformation of the path, and θβ is the sequence of outputs produced

by the path. The characteristic tuple captures that if Rβ is satisfied by v̄, a vector of

variables of I
⋃

V , at the beginning of β, then the path is traversed and after traversal

the updated values of the variables of V are given by sβ(v̄) along with the output θβ(v̄).

Details about computation of the characteristic tuple can be found in [95].

In order to represent the assignment statements and the conditional statements

involving arrays, we borrow the read (rd) and write (wr) functions introduced by Mc-

Carthy [120] because of the following reasons: (i) an elegant representation of the

characteristic of a path is achieved with each array being depicted as a vector; (ii) the

sequence of transformations of elements of arrays can be captured; and (iii) the sub-

stitution operations on scalar and array variables while finding the characteristic tuple

92 Chapter 5 Code Motion Transformations in Array-Intensive Programs

of a path can be carried out identically. For example, the operation a[i]⇐ b[i]+ z is

represented as wr(3)(a, i, rd(2)(b, i)+ z). Originally, the functions have been proposed

in [120] for only one-dimensional arrays, where rd has arity two and wr has arity three.

We generalize the functions for n-dimensional arrays with their arities suitably mod-

ified (to accommodate the n index expressions). However, for brevity, we shall omit

the arities of these functions whenever it is clear from the context. Henceforth, the

data transformations in FSMDAs will be represented using McCarthy’s operations.

Figure 5.1 illustrates the process of computation of the characteristic of a path, say

γ, in an FSMDA. Here Rγ ≡ (rd(a, i) == v), sγ = {a⇐ wr(wr(a, i, f (v)), i, rd(wr(a, i,

f (v)), j) + g(u)), x⇐ rd(wr(wr(a, i, f (v)), i, rd(wr(a, i, f (v)), j) + g(u)), i) + g(u)},
and θγ is empty. The data transformation sγ can be computed by using the backward

substitution method (also known as weakest precondition computation) as shown in

Figure 5.1.

5.4 Normalization of expressions involving arrays

To represent arithmetic and logical expressions the normalization technique described

in [141] has traditionally been used [21, 25, 90, 95, 110]. The problem of determining

equivalence of two arbitrary arithmetic expressions over integers is undecidable. Nor-

malization of arithmetic expressions is the first step whereby their structural similarity

is targeted; many equivalent formulae become syntactically identical in the process.

On application of the grammar rules in [141], it is possible to convert any arith-

metic expression involving integer variables and constants into its normalized form.

The set of grammar rules has been updated by addition of the last production rule in

the subset 3 and introduction of the rule 5, as given below, to accommodate arrays.

Updated grammar:

1) S→ S+T
∣∣cs, where cs is an integer.

2) T → T ∗P
∣∣ct , where ct is an integer.

3) P → abs(S)
∣∣(S)mod(Cd)

∣∣S÷Cd
∣∣v∣∣cm

∣∣A, where v ∈ Is
⋃

Vs
⋃

Vi, and cm is an

integer.

5.5 Equivalence checking of FSMDAs 93

4) Cd → S÷Cd
∣∣(S)mod(Cd)

∣∣S.

5) A→ wr(k+2)(v′,S1, . . . ,Sk,S)
∣∣rd(k+1)(v′,S′1, . . . ,S

′
k), where v′ ∈ Ia

⋃
Va, and S1,

. . . ,Sk,S′1, . . . ,S
′
k are of type S (sum) involving variables in Vi.

In the above grammar, the non-terminals S, T , P stand for (normalized) sums,

terms and primaries, respectively, A is an array primary, and Cd is a divisor pri-

mary. The terminals are the variables belonging to I
⋃

V , the interpreted function

constants abs, mod and ÷ and the user defined uninterpreted function constants f .

In addition to the syntactic structure, all expressions are ordered as follows: any

normalized sum is arranged by lexicographic ordering of its constituent subexpres-

sions from the bottom-most level, i.e., from the level of simple primaries assuming

an ordering over the set of variables I
⋃

V ; among the function terminals, abs ≺ ÷ ≺
mod ≺ uninterpreted function constants. As such, all function primaries, including

those involving the uninterpreted ones, are ordered in a term in an ascending or-

der of their arities. Similarly, array primaries in a term are ordered in an ascend-

ing order of their dimensions. Primaries involving same array names are ordered

in a term according to the order of their subscript expressions. Thus, a term of the

form rd(2)(a,s6)∗ rd(3)(b,s3,s4)∗ rd(3)(b,s2,s5)∗ rd(2)(c,s1) is ordered as rd(2)(a,s6)∗
rd(2)(c,s1)∗ rd(3)(b,s2,s5)∗ rd(3)(b,s3,s4), where a ≺ c and the normalized subscript

expressions (sums) have an ordering s2 ≺ s3; the ordering of the remaining subscript

expressions do not play any role in this case.

5.5 Equivalence checking of FSMDAs

The symbolic value propagation based equivalence checking method for FSMDs given

in Chapter 3 is adapted for FSMDAs with a few additional steps. Basically, the method

of symbolic value propagation consists in propagating the mismatched variable values

(as propagated vectors) over a path to the subsequent paths until the values match or

the final path segments are accounted for without finding a match. During the course

of equivalence checking of two behaviours, two paths, say α and β, (one from each

behaviour) are compared with respect to their corresponding propagated vectors for

finding path equivalence. In case the computed characteristic tuples of the two paths

match, they are declared as unconditionally equivalent (U-equivalent) (represented as

94 Chapter 5 Code Motion Transformations in Array-Intensive Programs

q′m

q′n

q′n+1

q′n+2

(b) M1

−/a[j]⇐ e j

−/a[i]⇐ ei

−/i⇐ di,

j⇐ d j

qm

qn

qn+1

qn+2

(a) M0

−/a[i]⇐ ei

−/a[j]⇐ e j

−/i⇐ di,

j⇐ d j

Figure 5.2: Propagation of index variables’ values.

α ' β); if some mismatch is detected, then they are declared as conditionally equiv-

alent (C-equivalent) (represented as α 'c β) provided all the paths emanating from

the final states of α and β lead to some U-equivalent paths. In this work, the val-

ues of scalar and array variables are propagated to subsequent paths on encountering

mismatches. However, the values of the index variables are propagated under all cir-

cumstances, irrespective of whether their values match in the corresponding paths or

not, provided they are live (i.e., used subsequently prior to further definition). There-

fore, unlike Chapter 3 where the propagated vectors are reset to their identity values

upon finding a pair of U-equivalent paths, we continue to propagate the values to re-

solve subsequent (mis)matches for the variables. The following example underlines

the justification.

Example 7. Let us consider the partial FSMDAs M1 and M2 given in Figure 5.2.

Suppose qn and q′n are corresponding states, and we intend to find an equivalent

path for qn � qn+2, say α, in M1. When we compare the path α with the path

q′n � q′n+2, say β, we find that their data transformations differ; specifically, sα =

{a⇐ wr(wr(a, i,ei), j,e j)} and sβ = {a⇐ wr(wr(a, j,e j), i,ei)}. For the paths to be

equivalent, one of the following cases must hold: (i) ei = e j and i = j, (ii) i 6= j. In

either case, the relation between i and j has to be ascertained. It is possible to infer

whether i = j or i 6= j holds if their values at qn and q′n, i.e. di and d j respectively, are

made available (by symbolic value propagation) at the states qn and q′n, even if indi-

vidually the i-values and the j-values are identical over the previous respective path

5.5 Equivalence checking of FSMDAs 95

segments, qm � qn and q′m � q′n. Without such symbolic value propagation of the

index variables, the equivalence between the array transformations will call for case

analysis for each such nesting. �

The undermentioned axioms [84] together with the propagated values of the index

variables at the start states of the paths are used for resolving equivalence of array

transformations over the paths.

i 6= j ⊃ rd(wr(wr(a, i,e1), j,e2), i) = e1 ∧

rd(wr(wr(a, i,e1), j,e2), j) = e2

(5.1)

i = j ⊃ rd(wr(wr(a, i,e1), j,e2), i) = e2 ∧

rd(wr(wr(a, i,e1), j,e2), j) = e2

(5.2)

In cases where sα = {a⇐ wr(wr(a, i,e1), j,e2)}, sβ = {a⇐ wr(wr(a, j,e2), i,e1)}
and i 6= j hold, the data transformations sα and sβ are deemed equivalent by ax-

iom (5.1), and where sα = {a⇐ wr(wr(a, i,e1), j,e2)}, sβ = {a⇐ wr(a, j,e2)} and

i = j hold, sα and sβ are deemed equivalent by axiom (5.2).

The example given below illustrates the equivalence checking method of FSM-

DAs. The function equivalenceChecker (Algorithm 8) is then presented which de-

scribes the overall verification procedure in brief.

Example 8. Figure 5.3 shows two FSMDAs M1 and M2 having q1,0 and q2,0 as the

reset states, respectively. Initially, we start from the reset states and for each path in

M1 we try to find a U-equivalent or C-equivalent path in M2 following a depth-first

traversal of the FSMDAs as shown below. The variable ordering for the vectors is

〈i, j,a〉.

Table 5.1 lists the steps involved; the letters U, C and N in the last column of the

table stand for U-equivalent, C-equivalent and not feasible, respectively. Some of the

steps, especially the *-marked ones, require a closer inspection as elaborated below in

order.

Step 1: The paths q1,0
c1−−−� q1,1 in M1 and q2,0

c1−−−� q2,1 in M2 have the data trans-

formation {i⇐ 2, j⇐ 2,k⇐ 1,x⇐ 0} and the condition of execution c1; hence they

96 Chapter 5 Code Motion Transformations in Array-Intensive Programs

Table
5.1:C

om
putation

ofpropagated
vectors

during
equivalence

checking
ofFSM

D
A

s

St
α
∈

M
1

InitialV
ector

β
∈

M
2 ,

InitialV
ector

FinalV
ector

FinalV
ector

D
eci

ep
for

α
s.t.

α
'

[c]
β

for
β

for
α

for
β

sion

1
q

1,0
c1
−−−�

q
1,1

〈>
,〈i,j,a,k,x〉〉

q
2,0

c1
−−−�

q
2,1

〈>
,〈i,j,a,k,x〉〉

〈c1 ,〈2,2
,a,k,x〉〉

〈c1 ,〈2,2,a
,k,x〉〉

U

2
q

1,1
k<

10
−−−−−�

q
1,1

〈c1 ,〈2,2,a,k,x〉〉
q

2,1
k<

10
−−−−−�

q
2,1

〈c1 ,〈2,2,a
,k,x〉〉

〈c1 ,〈2,2
,a,k,x〉〉

〈c1 ,〈2,2,a
,k,x〉〉

U

*3
q

1
,1

¬
(k<

10
)∧

c2
−−−−−−−−−�

q
1,2

〈c1 ,〈2,2,a,k,x〉〉
q

2,1
¬
(k<

10)∧
c2

−−−−−−−−−�
q

2,2
〈c1 ,〈2,2,a

,k,x〉〉
〈c1 ∧

¬
(k

<
10

)∧
c2 ,

〈c1 ∧
¬
(k

<
10

)∧
c2 ,

U

〈2,1,a
,k,x〉〉

〈2,1,a,k,x〉〉

4
q

1,2
i=

j
−−−−�

q
1,0

〈c1 ∧
¬
(k

<
10)∧

c2 ,
–

–
–

–
N

〈2
,1,a,k,x〉〉

*5
q

1,2
i6=

j
−−−−�

q
1,0

〈c1 ∧
¬
(k

<
10)∧

c2 ,
q

2,2
i6=

j
−−−−�

q
2,0

〈c1 ∧
¬
(k

<
10

)∧
c2 ,

〈c1 ∧
¬
(k

<
10

)∧
c2 ∧

i6=
j,

〈c1 ∧
¬
(k

<
10)∧

c2 ∧
i6=

j,
U

〈2
,1,a,k,x〉〉

〈2,1,a,k,x〉〉
〈2,1,a

,k,x〉〉
〈2,1,a,k,x〉〉

*6
q

1
,1

¬
(k<

10
)∧¬

c2
−−−−−−−−−−�

q
1
,0

〈c1 ,〈2,2,a,k,x〉〉
q

2,1
¬
(k<

10)∧¬
c2

−−−−−−−−−−�
q

2,0
〈c1 ,〈2,2,a

,k,x〉〉
〈c1 ∧

¬
(k

<
10)∧

¬
c2 ,

〈c1 ∧
¬
(k

<
10

)∧
¬

c2 ,
U

〈2,2,w
r(a,2,20),k,x〉〉

〈2
,2,w

r(a
,2,20

),k,x〉〉
7

q
1,0

¬
c1

−−−−�
q

1,1
〈>

,〈i,j,a,k,x〉〉
q

2,0
¬

c1
−−−−�

q
2,1

〈>
,〈i,j,a,k,x〉〉

〈¬
c1 ,〈2,3,a,k,x〉〉

〈¬
c1 ,〈2,3

,w
r(a,2

,10
),k,x〉〉

C

*8
q

1,1
k<

10
−−−−−�

q
1,1

〈¬
c1 ,〈2,3

,a,k,x〉〉
q

2,1
k<

10
−−−−−�

q
2,1

〈¬
c1 ,〈2

,3
,w

r(a,2
,10

),k,x〉〉
〈¬

c1 ,〈2,3,a,k,x〉〉
〈¬

c1 ,〈2,3
,w

r(a,2
,10

),k,x〉〉
C

9
q

1
,1

¬
(k<

10
)∧

c2
−−−−−−−−−�

q
1,2

〈¬
c1 ,〈2,3

,a,k,x〉〉
q

2,1
¬
(k<

10)∧
c2

−−−−−−−−−�
q

2,2
〈¬

c1 ,〈2
,3
,w

r(a,2
,10

),k,x〉〉
〈¬

c1 ∧
¬
(k

<
10)∧

c2 ,
〈¬

c1 ∧
¬
(k

<
10

)∧
c2 ,

C

〈2,2,a
,k,x〉〉

〈2
,2,w

r(a
,2,10

),k,x〉〉

10
q

1,2
i=

j
−−−−�

q
1,0

〈¬
c1 ∧
¬
(k

<
10

)∧
c2 ,

q
2,2

i=
j

−−−−�
q

2,0
〈¬

c1 ∧
¬
(k

<
10)∧

c2 ,
〈¬

c1 ∧
¬
(k

<
10)∧

c2 ∧
i
=

j,
〈¬

c1 ∧
¬
(k

<
10

)∧
c2 ∧

i
=

j,
U

〈2
,2,a,k,x〉〉

〈2
,2,w

r(a
,2,10

),k,x〉〉
〈2,2,w

r(a,2,10),k,x〉〉
〈2
,2,w

r(a
,2,10

),k,x〉〉

11
q

1,2
i6=

j
−−−−�

q
1,0

〈¬
c1 ∧
¬
(k

<
10

)∧
c2 ,

–
–

–
–

N

〈2
,2,a,k,x〉〉

12
q

1
,1

¬
(k<

10
)∧¬

c2
−−−−−−−−−−�

q
1
,0
〈¬

c1 ,〈2,3
,a,k,x〉〉

q
2,1

¬
(k<

10)∧¬
c2

−−−−−−−−−−�
q

2,0 〈¬
c1 ,〈2

,3
,w

r(a,2
,10

),k,x〉〉
〈¬

c1 ∧
¬
(k

<
10

)∧
¬

c2 ,
〈¬

c1 ∧
¬
(k

<
10

)∧
¬

c2 ,
U

〈2,3,w
r(w

r(a,2
,10

),3,20
),k,x〉〉〈2

,3,w
r(w

r(a,2,10),3,20),k,x〉〉

5.5 Equivalence checking of FSMDAs 97

q2,0

q2,9

q2,1

q2,4

(b) M2

i 6= j/−

−/a[i]⇐ 10,

¬c1/i⇐ 2,
j⇐ 3,

¬c2/a[j]⇐ 20q2,2

i = j/−

c1/i⇐ 2,
j⇐ 2,

x⇐ 0

k⇐ 1,
x⇐ 0

c2/ j⇐ j−1

−/−

k⇐ 2,

¬(k < 10)∧

k < 10/

k⇐ k+1
x⇐ x+ k,

¬(k < 10)∧

q1,0

q1,3

i 6= j/−

q1,1

q1,4

(a) M1

−/a[j]⇐ 20

q1,2

i = j/
a[j]⇐ 10

−/−

¬c2/a[i]⇐ 10

¬c1/i⇐ 2,
j⇐ 3,

c1/i⇐ 2,
j⇐ 2,
k⇐ 1,
x⇐ 0

k⇐ 2,
x⇐ 0

k < 10/
x⇐ x+ k,
k⇐ k+1

¬(k < 10)∧
c2/ j⇐ j−1
¬(k < 10)∧

Figure 5.3: An example of equivalence checking of FSMDAs.

are identified to be U-equivalent; however, recursive search for U-equivalent or C-

equivalent paths from the respective final states q1,1 and q2,1 is pursued with the prop-

agated values of the index variables; this permits proper use of the equality antecedents

of the axioms (1) or (2) to simplify data transformations of array elements in the sub-

sequent path segments as explained in Example 7.

Step 2: The simple loops in the respective FSMDAs are now compared. Since their

characteristic tuple match perfectly, these two loops are declared U-equivalent as well.

Step 3: When the paths q1,1
¬(k<10)∧c2
−−−−−−−−−� q1,2 and q2,1

¬(k<10)∧c2
−−−−−−−−−� q2,2 are com-

pared, a similar decision, as in steps 1 and 2, is taken.

Step 4: The condition for the path q1,2
i= j
−−−−� q1,0 is not satisfied by the propagated

values i⇐ 2, j⇐ 1; specifically, the original Rα ≡ (i = j) and under propagated vec-

tor R′α ≡ (i = j){i/2, j/1} ≡ (2 = 1)≡ false – accordingly, search for a U-equivalent

or C-equivalent path is abandoned through this path for the corresponding propagated

vector.

Step 5: Upon considering the path q1,2
i6= j
−−−−� q1,0, it is found to be U-equivalent with

q2,2
i 6= j
−−−−� q2,0. Since the reset states are reached as the final states of the paths, fur-

ther search for equivalent paths is not pursued.

Step 6: When the paths q1,1
¬(k<10)∧¬c2
−−−−−−−−−−� q1,0 and q2,1

¬(k<10)∧¬c2
−−−−−−−−−−� q2,0 are com-

pared, their data transformations are found to be {i⇐ 2, j⇐ 2,a⇐ wr(wr(a,2,10),

98 Chapter 5 Code Motion Transformations in Array-Intensive Programs

2,20)} and {i ⇐ 2, j ⇐ 2,a ⇐ wr(a,2,20)}, respectively. Since i = j, from ax-

iom (5.2), the data transformation of q1,1
¬(k<10)∧¬c2
−−−−−−−−−−� q1,0 can be rewritten as {i⇐

2, j⇐ 2,a⇐wr(a,2,20)}, making it equivalent to that of the path q2,1
¬(k<10)∧¬c2
−−−−−−−−−−�

q2,0. The values for the variable a in both the paths match, and hence its symbolic

value “a” is stored in the final propagated vector. The paths are declared U-equivalent.

Since reset states have been reached, no further search from the respective final state

is needed.

Step 7: The operation a ⇐ wr(a, i,10) in the path q2,0
¬c1−−−−� q2,1 has no identi-

cal operation in the path q1,0
¬c1−−−−� q1,1. Therefore, this is the first step where the

transformed propagated vectors mismatch, and hence the two paths are declared to

be candidate C-equivalent. The value for the array a is propagated anticipating that a

similar operation may eventually be discovered in M1 making the subsequent paths U-

equivalent. If all the subsequent paths eventually lead to some U-equivalent path, then

such candidate C-equivalent paths are declared to be C-equivalent; otherwise they are

adjudged to be inequivalent.

Step 8: The loops q1,1
k<10
−−−−−� q1,1 and q2,1

k<10
−−−−−� q2,1 with propagated vectors

〈¬c1,〈2,3,a,k,x〉〉 (= ϑ̄, say) and 〈¬c1,〈2,3,wr(a,2,10),k,x〉〉 (= ϑ̄′), respectively,

are compared; although the characteristic tuples of the loops match, the mismatch in

the value of a persists. Since the propagated vectors obtained during the entry and the

exit of the loop for both the FSMDAs are identical, it indicates that code motion across

loop may have occurred, i.e., if an assignment of the variable a is found in M1 which

renders the values of a in both the FSMDAs equivalent, then such code motion across

loop will indeed be valid. So, these paths are declared as candidate C-equivalent and

the search for U-equivalence is continued.

Step 9: Upon comparing the paths q1,1
¬(k<10)∧c2
−−−−−−−−−� q1,2 and q2,1

¬(k<10)∧c2
−−−−−−−−−� q2,2,

the matching operation in M1 is still not found, and the values for a along with those

of the index variables are further propagated.

Step 10: The matching operation is finally found in the path q1,2
i= j
−−−−� q1,0 mak-

ing its data transformation same as that of q2,2
i= j
−−−−� q2,0, i.e. {i⇐ 2, j⇐ 2,a⇐

wr(a,2,10)}, confirming a valid code motion across loop and rendering these two

paths U-equivalent.

Step 11: Similar situation as that of step 4 arises, and hence the path q1,2
i 6= j
−−−−� q1,0

is deemed to be not feasible for the corresponding propagated vector.

Step 12: Based on the propagated vectors ϑ̄ and ϑ̄′ at q1,1 and q2,1, the data trans-

5.6 Correctness and complexity 99

formations for both the paths q1,1
¬(k<10)∧¬c2
−−−−−−−−−−� q1,0 and q2,1

¬(k<10)∧¬c2
−−−−−−−−−−� q2,0 are

found to be {i⇐ 2, j⇐ 3,a⇐ wr(wr(a,2,10),3,20)}, and they are declared to be

U-equivalent. The candidate C-equivalent paths identified in steps 7, 8 and 9 are also

declared as actually C-equivalent.

In each of the steps 5, 6, 10 and 12, the reset states are revisited on traversing the

path, which marks the end of a computation for the FSMDA. Note that any prevailing

discrepancy in the vectors at this stage would indicate that the FSMDAs may not

be equivalent. However, in this example, whenever the reset states are revisited, we

find that the final propagated vectors in both the FSMDAs M1 and M2 are identical.

Therefore, we can conclude M1 v M2. Now, it is checked whether any path in M2

remains whose equivalent path has not been found in M1. Since no such path exists in

M2, the FSMDAs M1 and M2 are declared equivalent. �

Algorithm 8 equivalenceChecker (FSMDA M1, FSMDA M2)
1: Incorporate cut-points in M1 and M2 and compute the respective path covers, P1 and P2. //

cf. Section 5.3

2: Normalize all the expressions. // cf. Section 5.4

3: Compute the characteristic tuple for each path. // cf. Section 5.3

4: Starting with the pair of reset states 〈q1,0,q2,0〉 choose paths from P1 and P2 in a depth-first

manner. // cf. Section 5.5 for this step and all the subsequent steps

5: For every state pair comprising the final states of the chosen paths, propagate the values

of the mismatched variables and the index variables.

6: If any mismatched value remains unresolved when any of the final paths of the compu-

tations (i.e., back to the reset states) of M1 and M2 are accounted for, declare possibly

M1 6vM2; otherwise, declare M1 vM2.

7: If any path of P2 exists which does not pair with a path of P1, then possibly M2 6v M1;

otherwise, M2 vM1 and hence declare M1 ≡M2.

5.6 Correctness and complexity

5.6.1 Correctness

The overall equivalence checking method of FSMDAs primarily differs from that of

FSMDs, as explained in Chapter 3, in two ways: (i) representation of array references

100 Chapter 5 Code Motion Transformations in Array-Intensive Programs

using McCarthy’s functions and (ii) propagation on index variable values in spite of

a match. Since none of these modifications has any bearing on the correctness of

the equivalence checking procedure for FSMDAs as compared to that of FSMDs, the

proofs of soundness and termination for Algorithm 8 are explained here intuitively to

avoid repetition.

Soundness: Once the cut-points have been introduced and the path covers have

been constructed (step 1 in Algorithm 8), the equivalence checking method starts

with the reset states and for each path in FSMDA M1 searches for corresponding

U-equivalent or C-equivalent path in the other FSMDA M2 in a depth-first manner

(steps 4 and 5). It declares the two FSMDAs equivalent only when the algorithm suc-

ceeds in finding U-equivalent or C-equivalent path pairs for every path in M1 and M2

(step 7), otherwise the FSMDAs are considered to be possibly non-equivalent (steps 6

and 7). Now, suppose that the algorithm is not sound, i.e., it declares two FSMDAs

to be equivalent when there is a path, γ say, in either of the FSMDAs containing an

operation, e say, whose match does not occur in the other FSMDA. The path γ will

obviously not have a U-equivalent path in the other FSMDA; moreover, it will nei-

ther have a C-equivalent path because, as already mentioned in the beginning of the

previous section, two paths are declared to be C-equivalent only when all the paths em-

anating from their final states lead to some U-equivalent paths, i.e., the mismatched

operation e must have been compensated for eventually in the other FSMDA, which

is a contradiction.

Termination: Since normalization of expressions and computing characteristic

tuples of paths take finite number of steps and the number of paths in an FSMDA is

finite, Algorithm 8 must terminate.

5.6.2 Complexity

Representation of array references by adopting McCarthy’s functions does not change

the complexity of normalization. On the other hand, propagation of variable values

(index or otherwise) has to be done along all possible paths in the worst case, where

the mismatches are not resolved until the last path in an FSMDA has been traversed;

thus, the second difference on account of index variables leads to no ramification

of the worst case time complexity of the equivalence checking method of FSMDAs

5.7 Experimental Results 101

Table 5.2: Verification results of code transformations

Benchmark #arr #op #BB #if #loop #path Orig FSMDA Trans FSMDA Time

#state #scalar #state #scalar (ms)

ASSORT 1 46 7 1 2 7 22 13 26 27 22

BLOWFISH 5 64 14 3 7 21 61 17 36 21 44

FFT 8 42 6 0 3 7 31 22 19 28 36

GCD 1 18 9 4 2 13 14 3 8 3 11

GSR 2 22 6 0 3 7 15 10 11 16 16

LU–DECOMP 2 56 18 2 8 21 47 8 44 20 21

LU–PIVOT 2 15 6 2 1 7 15 6 11 6 6

LU–SOLVE 4 34 10 0 5 11 28 4 22 14 12

MINSORT 1 22 6 1 2 7 20 7 11 7 7

SB–BALANCE 3 24 14 2 4 13 22 3 13 6 9

SB–PC 3 25 11 1 4 11 21 6 15 12 8

SB–SAC 3 21 11 1 4 11 20 5 14 8 8

SVD 4 279 82 17 36 107 250 25 220 77 93

TR-LCOST 4 74 25 4 9 27 56 14 46 31 35

TR-NWEST 5 72 25 4 9 27 54 13 47 29 31

TR-VOGEL 8 160 54 17 14 63 96 13 70 68 68

WAVELET 2 41 4 1 2 7 25 8 14 32 14

ERRONEOUS 1 22 5 1 2 7 16 6 15 10 6

in comparison to that of FSMDs. Therefore, the time complexity of Algorithm 8 is

O((k · n+ |V1
⋃

V2|) · 2‖F‖ · n · k(n−1) · (n− 1)(n−1)) in the worst case, where n is the

number of states in the FSMDA, k is the maximum number of parallel edges between

any two states, |V1
⋃

V2| is the total number of variables in the two FSMDAs and ‖F‖
is the maximum length of a normalized formula.

5.7 Experimental Results

Our symbolic value propagation based equivalence checker for FSMDAs has been im-

plemented in C and the tool is available at http://cse.iitkgp.ac.in/~chitta/pubs/Equivale-

nceChecker_FSMDA.tar.gz along with the benchmarks, installation and usage guide-

lines. The benchmarks comprise behaviours which are computation intensive and

which primarily involve arrays. ASSORT computes the degree assortativity of graphs,

BLOWFISH implements the encryption algorithm of a block cipher, FFT performs

http://cse.iitkgp.ac.in/~chitta/pubs/Equivale-
nceChecker_FSMDA.tar.gz

102 Chapter 5 Code Motion Transformations in Array-Intensive Programs

fast Fourier transform, GCD finds the greatest common divisor of the members of

an array, GSR implements Gauss-Seidel relaxation method, MINSORT is a sorting

function, SVD computes singular value decomposition of a matrix, and WAVELET

implements the Debaucles 4-coefficient wavelet filter. The benchmarks having “LU”

as prefix are concerned with the LU decomposition of a matrix, which is a key step

for several algorithms in linear algebra. The benchmarks having “SB” as prefix test

cryptographic properties like balancedness, PC, and SAC for an S-box [142] whereas,

those with “TR” are the various solutions to the transportation problem namely least

cost method, northwest corner method and Vogel’s approximation method. ERRO-

NEOUS is an example which reveals a bug in the implementation of copy propaga-

tion for array variables in the SPARK [64] tool that was first reported in [103]. These

benchmarks are fed to the SPARK tool to obtain the transformed behaviours. New

scalar variables, but no array variables, are introduced during the transformations.

The proposed method can ascertain the equivalences in all the cases except the last

one; in this case, it reports a possible non-equivalence and outputs a set of paths (each

paired with an almost similar path) for which equivalence could not be found. The

verification results are provided in Table 5.2.

The outputs of SPARK do not contain any “for” loops; the tool converts them into

do-while loops. The tools of [154] and [88] which are existing equivalence checkers

for array-intensive programs require the loops to be represented as “for” loops with

their ranges clearly specified. Hence, the do-while loops in the outputs of the SPARK

tool corresponding to for loops in the original specifications are manually restored to

for loops and given along with the original programs to these tools for equivalence

checking. These tools, however, still failed to establish the equivalence.

5.7.1 Current limitations

The method presented in this work has the following limitations.

(1) Arrays containing other arrays in their subscripts are not allowed. A possible

remedy is to simply allow arrays to appear in Vi; however, our current imple-

mentation does not support it.

(2) It cannot handle loop transformations.

5.8 Conclusion 103

5.8 Conclusion

The literature on behavioural verification is rich with applications of the FSMD model

involving only scalar variables. The model, and hence the verifiers built upon it, can-

not handle arrays. To alleviate this limitation, the current chapter has made the follow-

ing contributions. (i) A new model called FSMDA is introduced which is an extension

of the FSMD model equipped to handle arrays. (ii) An improvisation of the normal-

ization process [141] is suggested to represent arithmetic expressions involving arrays

in normalized forms. (iii) The equivalence checker described in Chapter 3 is fitted

with the FSMDA model to verify code transformations in array-intensive programs.

The experiments carried out on benchmarks from various domains of embedded sys-

tems such as signal processing, data communication, hardware security, etc. attest

the efficacy of the method. Enhancing the present method to overcome the current

limitations stated above remains as our future goal.

Chapter 6

Translation Validation of Loop and
Arithmetic Transformations in the
Presence of Recurrences

6.1 Introduction

Loop transformations together with arithmetic transformations are applied extensively

in the domain of multimedia and signal processing applications to obtain better per-

formance in terms of energy, area and/or execution time [30, 79, 131, 165]. Loop

transformations essentially involve partitioning/unifying the index spaces of arrays.

Figure 6.1 shows two programs before and after application of loop fusion and tiling

transformations. Specifically, two nested loops in the original program are fused into

one and then the 8×8 index space of 〈i, j〉 is covered hierarchically along 4×4 tiles by

the outer loop iterators 〈l1, l2〉, each tile having 2× 2 elements covered by the inner

loop iterators 〈l3, l4〉. Clearly, establishing equivalence/non-equivalence of the two

programs shown in Figure 6.1 calls for an (elaborate) analysis of the index spaces of

the involved arrays. The equivalence checking strategy involving the FSMDA model,

as explained in the previous chapter, is not equipped to handle such reasoning over

array index spaces; rather data dependence graph based analyses have been found to

be suitable for verification of loop transformations.

105

106 Chapter 6 Loop and Arithmetic Transformations in the Presence of Recurrences

f or(i = 0; i <= 7; i++){
f or(j = 0; j <= 7; j++){
S1 : A[i+1][j+1] = f (In[i][j]);

}}
f or(i = 0; i <= 7; i++){
f or(j = 0; j <= 7; j++){
S2 : b[i][j] = g(In[i][j]);

}}

(a) Original program.

f or(l1 = 0; l1 <= 3; l1++){
f or(l2 = 0; l2 <= 3; l2++){
f or(l3 = 0; l3 <= 1; l3++){

f or(l4 = 0; l4 <= 1; l4++){
i = 2∗ l1+ l3;

j = 2∗ l2+ l4;

S1 : a[i+1][j+1] = f (In[i][j]);

S2 : b[i][j] = g(In[i][j]);

}}}}

(b) Transformed program.

Figure 6.1: Two programs before and after loop transformation.

An array data dependence graph (ADDG) based equivalence checking method has

been proposed by Shashidhar et al. in [146] which is capable of verifying many loop

transformations without requiring any supplementary information from the compiler.

Another data dependence graph based method has been proposed by Verdoolaege et

al. in [153, 154] that can additionally handle recurrences. However, none of these

methods [146, 153, 154] can handle arithmetic transformations, such as distributive

transformations, common sub-expression elimination, arithmetic expression simplifi-

cation, constant (un)folding. The ADDG based method described in [86, 88] has been

shown to handle loop and arithmetic transformations. However, since recurrences lead

to cycles in the data-dependence graph of a program which make dependence analyses

and simplifications (through closed-form representations) of the data transformations

difficult, the method of [86, 88], which basically relies on such simplification proce-

dures, fails in the presence of recurrences. This chapter describes a unified equivalence

checking framework based on ADDGs to handle loop and arithmetic transformations

along with recurrences. Specifically, the slice based ADDG equivalence checking

framework [88] which handles loop and arithmetic transformations is extended so

that recurrences are also handled.

The rest of the chapter is organized as follows. The class of input programs that

is supported by our method is explained in Section 6.2. Section 6.3 introduces the

ADDG model and briefly explains the associated equivalence checking scheme as de-

scribed in [88]. Section 6.4 provides an extension of the equivalence checking scheme

to handle recurrences. The correctness and the complexity of the prescribed method

are formally treated in Section 6.5. The experimental results are given in Section 6.6.

6.2 The class of supported input programs 107

The chapter is finally concluded in Section 6.7.

6.2 The class of supported input programs

The following restrictions characterize the input programs that can be handled by our

equivalence checking method:

Static control-flow: A control flow of a program that can be exactly determined

at compile time or by some input parameters read at the beginning of the program is

called a static control flow (or data independent control flow). Programs with data

dependent control flow have to be first converted into data independent control flow

to make them amenable for our framework; data dependent while-loops are to be

converted manually to for-loops with worst-case bounds. Restricting to static control

flow is important because of non-availability of tools to determine the dependence

mappings and their domains for data dependent control flow.

Affine indices and bounds: All loop bounds, conditions, and array index expres-

sions of the programs must be affine expressions of the surrounding iterators and sym-

bolic constants. They, however, need not be strictly affine, but can be piece-wise (or

quasi) affine, thus, they can also have mod, div, max, min, floor and ceil operators.

The affine indices and bounds property is critical for the decidability or computability

of many of the operations that we need to perform on sets of integers and mappings

described by constraints expressed as affine functions.

Valid schedule: To satisfy the valid-schedule restriction, each value that is read in

an assignment statement has either been already written or is an input variable. This

is a common requirement in most of the array data-flow analysis methods [12].

Single-assignment form: A behaviour is said to be in single assignment (SA) form

if any memory location is written at most once in the entire behaviour. A program with

static control-flow and with affine indices and bounds can automatically be converted

into an equivalent program in single-assignment form [151].

Other restrictions: In a single-assignment form program, any variable other than

the loop indices, can be replaced with an array variable [144]. Therefore, without

108 Chapter 6 Loop and Arithmetic Transformations in the Presence of Recurrences

loss of generality, it is assumed that all the statements in the behaviours involve only

array variables and integer constants. Further, the program is not allowed to contain

any break, continue or goto statements and while loops. Thus, any loop is a for-

loop with three explicit parameters namely, the initial value expression, the final value

expression and the modifier step of the loop iterator. The bounds are affine expressions

over the surrounding loop iterators and symbolic integer parameters.

In short, the works reported in [88, 146] handle programs having the above restric-

tions along with the restriction on recurrences; the present work seeks to alleviate the

restriction on recurrences.

6.3 The ADDG model and the associated equivalence

checking scheme

This section introduces the ADDG model and then presents the existing equivalence

checking scheme for ADDGs. The definitions and the associated explanations given

here are borrowed from [88].

6.3.1 The ADDG model

Definition 19 (Array Data Dependence Graph (ADDG)). The ADDG of a sequen-

tial behaviour is a directed graph G = (V,E), where the vertex set V is the union

of the set A of array nodes and the set F of operator nodes and the edge set E =

{〈A, f 〉 | A ∈ A , f ∈ F }
⋃
{〈 f ,A〉 | f ∈ F ,A ∈ A}. Edges of the form 〈A, f 〉 are

write edges; they capture the dependence of the left hand side (lhs) array node on

the operator corresponding to the right hand side (rhs) expression. Edges of the form

〈 f ,A〉 are read edges; they capture the dependence of the rhs operator on the (rhs)

operand arrays. An assignment statement S of the form Z[ez] = f (Y1[e1], . . . ,Yk[ek]),

where e1, . . . ,ek and ez are respectively the vectors of index expressions of the arrays

Y1, . . . ,Yk and Z, appears as a subgraph GS of G, where GS = 〈VS, ES〉, VS = AS
⋃

FS,

AS = {Z,Y1, . . . ,Yk} ⊆ A , FS = { f} ⊆ F and ES = {〈Z, f 〉}
⋃
{〈 f ,Yi〉, 1≤ i≤ k〉} ⊆

E. The write edge 〈Z, f 〉 is associated with the statement name S. If the operator

associated with an operator node f has an arity k, then there will be k read edges

6.3 The ADDG model and the associated equivalence checking scheme 109

〈 f ,Y1〉, . . . ,〈 f ,Yk〉. The operator f applies over k arguments which are elements of the

arrays Y1, . . . ,Yk, not necessarily all distinct.

f or(i = 1; i≤M; i = i+1)

f or(j = 4; j ≤ N; j = j+1)

S1 : Y 1[i+1][j−3] = f 1(In1[i][j], In2[i][j]);

f or(l = 3; l ≤M; l = l +1){
f or(m = 3;m≤ N−1;m = m+1){

i f (l +m≤ 7)

S2 : Y 2[l][m] = f 2(Y 1[l−1][m−2]);

else

S3 : Y 2[l][m] = f 3(Y 1[l][N−3]);

S4 : Out[l][m] = f 4(Y 2[l][m]);

}}

(a) (b)

S1

S3

S4

S2

Y2

Y1

In1 In2

f1

f3f2

f4

Out

Figure 6.2: (a) A nested-loop behaviour. (b) Its corresponding ADDG.

Figure 6.2 shows a sequential behaviour and its corresponding ADDG. Certain

information will be extracted from each statement S of the behaviour and associated

with the write edge labeled with S in the ADDG. Let us first consider for this purpose

the generalized x-nested loop structure given in Figure 6.3 in which S occurs. Each

index (or iterator) ik,1 ≤ k ≤ x, has a lower limit Lk and a higher limit Hk and an

integer (increment/decrement) step constant rk. The terms Lk, Hk are expressions of

the surrounding loop iterators and integer variables. The statement S executes under

the condition CD over the loop indices ik, 1 ≤ k ≤ x, and integer constants within

the loop body. All the index expressions e1, . . . ,ek of the array Z and the expressions

e′1,1, . . . ,e
′
1,l1 , . . . ,e

′
m,1, . . . ,e

′
m,lm of the corresponding arrays Y1, . . . ,Ym in the statement

S are affine arithmetic expressions over the loop indices. The related definitions fol-

low.

f or(i1 = L1; i1 ≤ H1; i1+= r1)

f or(i2 = L2; i2 ≤ H2; i2+= r2)
...

f or(ix = Lx; ix ≤ Hx; ix+= rx)

i f (CD) then

S : Z[e1] . . . [ek] = f (Y1[e′1,1] . . . [e
′
1,l1

], . . . ,Ym[e′m,1] . . . [e
′
m,lm]);

Figure 6.3: A generalized nested loop structure

110 Chapter 6 Loop and Arithmetic Transformations in the Presence of Recurrences

Definition 20 (Iteration domain of the statement S (IS)). For each statement S within

a generalized loop structure with nesting depth x, the iteration domain IS of the state-

ment is a subset of Zx defined as

IS = {[i1, i2, . . . , ix] |
x∧

k=1

(Lk ≤ ik ≤ Hk∧CD∧∃αk ∈ Z(ik = αkrk +Lk))},

where, for 1 ≤ k ≤ x, the loop iterators ik are integers, Lk,Hk are affine expressions over the

loop iterators and some integer variables, and rk are integer constants.

Example 9. Let us consider the statement S1 of Figure 6.2(a). For this statement,

IS1 = {[i, j] | 1 ≤ i ≤ M ∧ 4 ≤ j ≤ N ∧ (∃α1,α2 ∈ N | i = α1 + 1∧ j = α2 + 4)}.
Similarly, for the statement S2 of the same example, the iteration domain is IS2 =

{[l, m] | 3 ≤ l ≤ M∧ 3 ≤ m ≤ N− 1∧ l +m ≤ 7∧ (∃α1,α2 ∈ N | l = α1 + 3∧m =

α2 +3)}. �

Definition 21 (Definition mapping (SM(d)
Z)). The definition mapping of a statement S

describes the association between the elements of the iteration domain of the statement

S and the elements of its lhs array Z (depicted as a suffix). SM(d)
Z = IS → Zk s.t.

∀v ∈ IS, v 7→ [e1(v), . . . ,ek(v)] ∈ Zk.

The image of the function SM(d)
Z is called the definition domain of the lhs array Z,

defined as SDZ . So, SDZ = SM(d)
Z (IS). Due to single assignment form, each element

of the iteration domain of a statement defines exactly one element of the lhs array of

the statement. Therefore, the mapping between the iteration domain of the statement

and image of SM(d)
Z is injective (one-one). Hence, (SM(d)

Z)−1 exists.

In a similar way, the operand mapping for each operand array of a statement can

be defined as follows.

Definition 22 (Operand mapping (SM(u)
Yn

)). The nth operand mapping of a statement S

describes the association between the elements of the iteration domain of the statement

S and the elements of one of its rhs arrays Yn; specifically, SM(u)
Yn

= IS → Zln s.t.

∀v ∈ IS, v 7→ [en,1(v), . . . ,en,ln(v)] ∈ Zln .

The image SM(u)
Yn

(IS) is the operand domain of the rhs array Yn in the statement

S, denoted as SUYn . One element of the operand array Yn may be used to define more

than one element of the array Z. It means that more than one element of the iteration

domain may be mapped to one element of the operand domain. Hence, SM(u)
Yn

may not

be injective.

6.3 The ADDG model and the associated equivalence checking scheme 111

Definition 23 (Dependence mapping (SMZ,Yn)). It describes the association of the

index expression of the lhs array Z which is defined through S to the index expression

of the operand array Yn,1≤ n≤ m, i.e., one of the rhs arrays of S.

SMZ,Yn = {[e1, . . . ,ek]→ [e′1, . . . ,e
′
ln] | ([e1, . . . ,ek] ∈ SDZ ∧

[e′1, . . . , e′ln] ∈ SUYn ∧ ∃v ∈ IS | ([e1, . . . ,ek] = SM(d)
Z (v) ∧

[e′1, . . . ,e
′
ln] = SM(u)

Yn
(v)))}

The defined array Z is k-dimensional and e1, . . . ,ek are its index expressions over the

loop indices v; the array Yn is an ln-dimensional array and e′1, . . . ,e
′
ln are its index

expressions over the indices v.

The dependence mapping SMZ,Yn can be obtained by the right composition (�)1 of

the inverse of definition mapping of Z (i.e., (SM(d)
Z)−1) and the operand mapping of

Yn (i.e., SM(u)
Yn

), i.e., by

SMZ,Yn = (SM(d)
Z)−1 � SM(u)

Yn

Specifically, SMZ,Yn(SDZ) = SM(u)
Yn

((SM(d)
Z)−1(SDZ)) = SM(u)

Yn
(IS) = SUYn .

The domain of the dependence mapping SMZ,Yn is the definition domain of Z, i.e.,

SDZ . The range of SMZ,Yn is the operand domain SUYn . In this case, each element of

SDZ exactly depends on a single element of SM(u)
Yn

. There would be one such mapping

from the defined array to each of the operand arrays in the rhs of S. The mappings

SMZ,Yn , 1≤ n≤ m, will be associated with the corresponding read edge 〈 f ,Yn〉 in the

ADDG.

Example 10. Let us consider the statement S1 of the Figure 6.2(a) again. For this

statement,

S1M(d)
Y 1 = {[i, j]→ [i+1, j−3] | 1≤ i≤M∧4≤ j ≤ N}

S1DY 1 = {[i+1, j−3] | 1≤ i≤M∧4≤ j ≤ N}

S1M(u)
In1 = {[i, j]→ [i, j] | 1≤ i≤M∧4≤ j ≤ N}

S1UIn1 = {[i, j] | 1≤ i≤M∧4≤ j ≤ N}
1(f � g)(x) = g(f (x))

112 Chapter 6 Loop and Arithmetic Transformations in the Presence of Recurrences

S1MY 1,In1 = (S1M(d)
Y 1)

−1 � S1M(u)
In1

= {[i, j]→ [i−1, j+3]� [i−1, j+3]→ [i−1, j+3]} | [i, j] ∈ S1DY 1}

= {[i, j]→ [i−1, j+3] | [i, j] ∈ S1DY 1}. �

Henceforth, for brevity, we use the symbols SM
Y (U) and SMZ,Y to respectively

represent the ordered collections (tuples) of the mappings 〈SM
Y1

(U), . . . ,SM
YN

(U)〉 and

〈SMZ,Y1
, . . . ,SMZ,YN

〉; similarly, the symbol SUY is used to represent the ordered tuple

〈SUY1
, . . . ,SUYN

〉 of the used domains of Y1, . . . ,YN .

A data dependence exists between two statements P and Q if Q defines the values

of one array, Y say, in terms of the elements of some array Z and P subsequently

reads the same values from the array Y to define another array X . The dependence

mapping between the array X and the array Z, i.e., PQMX ,Z , can be obtained from

the mappings PMX ,Y and QMY,Z by right composition (�) of PMX ,Y and QMY,Z . The

following definition captures this computation.

Definition 24 (Transitive Dependence). PQMX ,Z = PMX ,Y � QMY,Z = {[i1, . . . , il1]→
[k1, . . . ,kl3] | ∃[j1, . . . , jl2] s.t. [i1, . . . , il1] → [j1, . . . , jl2] ∈ PMX ,Y ∧ [j1, . . . , jl2] →
[k1, . . . ,kl3] ∈ QMY,Z}, where Y is used in P and is defined in Q.

We say that the array Y satisfies “used-defined” relationship over the sequence

〈P, Q〉 of statements. The domain PQDX , say, of the resultant dependence mapping

(i.e., PQMX ,Z) is the subset of the domain of PMX ,Y such that PQDX = range(PMX ,Y)
⋂

domain(QMY,Z). Thus, PQDX = PM−1
X ,Y (QM−1

Y,Z(QUZ)
⋂

PMX ,Y (PDX)). Similarly, the

range of PQMX ,Z is PQUZ = QMY,Z(PMX ,Y (PDX)
⋂

QM−1
Y,Z(QUZ)). The operation �

returns empty if PUY
⋂

QDY is empty which indicates that the iteration domain of P

and Q are non-overlapping.

It may be noted that the definition of transitive dependence can be extended over a

sequence of statements (by associativity) and also over two sequences of statements.

Example 11. Let us consider the behaviour and its corresponding ADDG of Fig-

ure 6.2. Let us now consider the statements S4 and S2 of the behaviour. We have

IS4 = {[l, m] | 3 ≤ l ≤ M ∧ 3 ≤ m ≤ N − 1∧ (∃α1,α2 ∈ Z | l = α1 + 3∧m =

α2 +3)},

6.3 The ADDG model and the associated equivalence checking scheme 113

S4DOut = IS4, S4UY 2 = IS4

S4MOut,Y 2 = {[l,m]→ [l,m] | [l,m] ∈ S4DOut},

IS2 = {[l, m] | 3 ≤ l ≤M∧ 3 ≤ m ≤ N−1∧ l +m ≤ 7∧ (∃α1,α2 ∈ Z | l = α1 +

3∧m = α2 +3)},

S2DY 2 = IS2,

S2UY 1 = {[l−1, m−2] | [l,m] ∈ IS2} and

S2MY 2,Y 1 = {[l,m]→ [l−1,m−2] | [l,m] ∈ S2DY 2}.

The transitive dependence mapping S4S2MOut,Y 1 can be obtained from S4MOut,Y 2

and S2MY 2,Y 1 by the composition operator � as follows:

S4S2MOut,Y 1 = S4MOut,Y 2 � S2MY 2,Y 1

= {[l,m]→ [l,m] | [l,m]∈ S4DOut} � {[l,m]→ [l−1,m−2] | [l,m]∈ S2DY 2}

= [l,m]→ [l−1,m−2] | [l,m] ∈ S4DOut}. �

6.3.2 Equivalence checking of ADDGs

Unlike a path in a control flow graph, an ADDG path may not be adequate to capture

a computation corresponding to a code segment comprising even a linear sequence of

assignment statements; hence we introduce the notion of a slice as follows.

Definition 25 (Slice). A slice is a connected subgraph of an ADDG which has an array

node as its start node (having no edge incident on it), only array nodes as its terminal

nodes (having no edge emanating from them), all the outgoing edges (read edges)

from each of its operator nodes and exactly one outgoing edge (write edge) from each

of its array nodes other than the terminal nodes. A slice g with A as the start node and

V1, . . . ,Vn as the terminal nodes is represented as g(A,V1, . . . ,Vn), shortened further as

g(A,V), where V = 〈V1, . . . ,Vn〉, ordered using a consistent ordering of all the array

names in the program.

Each statement in the ADDG in Figure 6.2 represents a slice. Also, each of the

114 Chapter 6 Loop and Arithmetic Transformations in the Presence of Recurrences

statement sequences 〈S2S1〉, 〈S3S1〉, 〈S4S2〉, 〈S4S3〉, 〈S4S2S1〉 and 〈S4S3S1〉 repre-

sents a slice in this ADDG. The start array node of a slice depends on each of the

terminal array nodes through a sequence of statements. Therefore, the dependence

mapping between the start array node and each of the terminal array nodes of a slice

can be computed as the transitive dependence mapping over the sequence of state-

ments from the start node to the terminal node, in question, using Definition 24. The

dependence mappings capture the index mappings between the start array node and

the terminal array nodes in a slice. In addition, it is required to store how the output

array is dependent functionally on the input arrays in a slice. We denote this notion as

the data transformation of a slice.

Definition 26 (Data transformation of a slice g (rg)). It is an algebraic expression

e over the terminal arrays of the slice such that e represents the value of the output

array of the slice after its execution.

The data transformation rg in a slice g can be obtained by using a backward sub-

stitution method [118] on the slice from its output array node up to the input array

nodes. The backward substitution method of finding rg is based on symbolic simula-

tion. The steps of the backward substitution method, for example, for computation of

data transformation for the slice represented by statement sequence 〈S4S2S1〉 in the

ADDG in Figure 6.2(b) are as follows:

Out⇐ f 4(Y 2) [at the node Y 2],

⇐ f 4(f 2(Y 1)) [at the node Y 1],

⇐ f 4(f 2(f 1(In1, In2))) [at the nodes In1 and In2]

The slice g is characterized by its data transformation and the list of dependence

mappings between the source array and the terminal arrays.

Definition 27 (Characteristic formula of a slice). The characteristic formula of a

slice g(A,V) is given as the tuple ∂g = 〈rg,gMA,V 〉, where A is the start node of

the slice, Vi, 1 ≤ i ≤ n, are the terminal nodes, rg is an arithmetic expression over

V = 〈V1, . . . ,Vn〉 representing the data transformation of g and gMA,V denotes the de-

pendence mapping between A and V .

We use the symbols gDA and gUV to denote the definition and the operand domains

of a slice.

6.3 The ADDG model and the associated equivalence checking scheme 115

Definition 28 (IO-slice). A slice is said to be an IO-slice iff its start node is an output

array node and all the terminal nodes are input array nodes.

It is required to capture the dependence of each output array on the input arrays.

Therefore, IO-slices are of interest to us. It may be noted that the slices represented

by the statement sequences 〈S4S2S1〉 and 〈S4S3S1〉 are the only two IO-slices in the

ADDG in Figure 6.2(b). To compute the characteristic formula of a slice, the nor-

malization technique for arithmetic expressions described in [141] is used along with

some simplification rules introduced in [86, 88].

Let G1 be the ADDG corresponding to an input behaviour and G2 be the ADDG

corresponding to the transformed behaviour obtained from the input behaviour through

loop and arithmetic transformations.

Definition 29 (Matching IO-slices). Two IO-slices g1 and g2 of an ADDG are said

to be matching, denoted as g1 ≈ g2, if the data transformations of both the slices are

equivalent.

Let the characteristic formula of gi(A,V), i = 1,2, be 〈rgi, giMA,V 〉, where A is

an output array and V = 〈V1, . . . ,Vl〉 comprises input arrays. These two slices are

matching slices if rg1 ' rg2 . Due to single assignment form of the behaviour, the

domain of the dependence mapping between the output array A and the input array Vj

in V in the slices g1 and g2, however, are non-overlapping.

Definition 30 (IO-slice class). An IO-slice class is a maximum set of matching IO-

slices.

Let a slice class be Cg(A,V) = {g1, . . . ,gk}. Let the characteristic formula of the

member slice gi, 1≤ i≤ k, be 〈rgi,giMA,V 〉. Due to single assignment form of the be-

haviour, the domain of the dependence mappings giMA,V j , for all i, 1≤ i≤ k, between

the output array A and the input array Vj in V , 1 ≤ j ≤ l, in the slices of Cg must be

non-overlapping. The domain of the dependence mapping CgMA,V j from A to Vj over

the entire class Cg is the union of the domains of giMA,V j , 1≤ i≤ k. So, the character-

istic formula of the slice class Cg is 〈rCg,CgMA,V 〉, where rCg is the data transformation

of any of the slices in Cg and CgMA,V j , 1≤ j ≤ l, in CgMA,V is

CgMA,V j =
⋃

1≤i≤k
giMA,V j .

116 Chapter 6 Loop and Arithmetic Transformations in the Presence of Recurrences

Therefore, a slice class can be visualized as a single slice.

Definition 31 (IO-slice class equivalence:). An IO-slice class C1 of an ADDG G1 is

said to be equivalent to an IO-slice class C2 of G2, denoted as C1 'C2, iff

(i) The data transformation of C1 and C2 are equivalent.

(ii) Both C1 and C2 consist of the same number of dependence mappings and the

corresponding dependence mappings in the two classes are identical.

Definition 32 (Equivalence of ADDGs:). An ADDG G1 is said to be equivalent to an

ADDG G2 iff for each IO-slice class C1 in G1, there exists an IO-slice class C2 in G2

such that C1 'C2, and vice-versa.

We now give an overview of the existing equivalence checking method with an

example before summarizing the broad steps in the following subsection.

f or(k = 0;k < 64;k++){
T 1[k] = B[2× k+1]+C[2× k];

T 2[k] = A[k]×T 1[k];}
f or(k = 5;k < 69;k++){

T 3[k] = A[k−5]−C[2× k−10];

T 4[k] = T 3[k]×B[2× k−9];}
f or(k = 0;k < 64;k++){

T 5[k] = A[k]×C[2× k];

Out[k] = T 2[k]−T 4[k+5]+T 5[k];}

(a)

f or(k = 0;k < 64;k++){
T [k] = 2×A[k]+B[2× k+1];

Out[k] =C[2× k]×T [k];}

(b)

Figure 6.4: (a) Original behaviour. (b) Transformed behaviour.

Example 12. Let us consider the behaviours of Figure 6.4 and their corresponding

ADDGs in Figure 6.5. Both the programs actually compute Out[k] = C[2k]× (2×
A[k] + B[2k+ 1]), 0 ≤ k ≤ 63. It may be noted from Figure 6.5 that each ADDG

has only one IO-slice. Let the IO-slices of the source behaviour and the transformed

behaviour be denoted as s and t, respectively. The method of [88] first extracts the

data transformation of the slice and the dependence mapping of each path of the slices

s and t. The data transformation rs of the slice s is A× (B+C)−B× (A−C)+A×C

and that of the slice t, namely rt , is C× (2×A+B). The normalized representation

of rs is 1×A×B + (−1)×A×B + 1×A×C + 1×A×C + 1×B×C + 0.

In this normalized expression, the terms 1 and 2 can be eliminated as the dependence

6.3 The ADDG model and the associated equivalence checking scheme 117

-

A

× ×

×+

(a)

f2

(b)

A

Out

×

f1

f1(A,B) = 2×A+B

B

f2(T 2,T 4,T 5) = T 2−T 4+T 5

T5T4T2

T3T1

C

T

Out

B C

Figure 6.5: (a) ADDG of the original behaviour. (b) ADDG of the transformed be-

haviour.

mappings from the output array Out to the arrays A and B are identical. In particular,

the dependence mapping from Out to A is MOut,A = {[k]→ [k] | 0 ≤ k < 64} and the

dependence mapping from Out to B is MOut,B = {[k]→ [2× k+ 1] | 0 ≤ k < 64} in

both term 1 and term 2. Similarly, term 3 and term 4 of the normalized expression

have the same dependence mappings from Out to A and the dependence mappings

from Out to C. In particular, the dependence mappings from Out to A and from Out

to C are MOut,A = {[k]→ [k] | 0≤ k < 64} and MOut,C = {[k]→ [2×k] | 0≤ k < 64},
respectively. So, term 3 and term 4 can be collected. Therefore, after application

of our simplification rules, rs becomes 2× A×C + 1× B×C + 0. The nor-

malized representation of rt is 2× A×C + 1× B×C + 0. Therefore, rs ' rt .

After simplification, the data transformations of the IO-slices consist of three in-

put arrays including two occurrences of C. So, we need to check four dependence

mappings, each one from Out to the input arrays A, B, C(1) in term 1 and C(2) in

term 2. The respective dependence mappings are MOut,A = {[k]→ [k] | 0 ≤ k < 64},
MOut,B = {[k]→ [2×k+1] | 0≤ k < 64}, MOut,C(1) = {[k]→ [2×k] | 0≤ k < 64} and

MOut,C(2) = {[k]→ [2× k] | 0 ≤ k < 64}, respectively in the slice s. It can be shown

that MOut,A, MOut,B, MOut,C(1) and MOut,C(2) in slice t are the same as those in the slice

s. So, the slices s and t are equivalent. Hence, the ADDGs are equivalent. �

118 Chapter 6 Loop and Arithmetic Transformations in the Presence of Recurrences

Algorithm 9 ADDG_EQX11 (ADDG G1, ADDG G2)
Inputs: Two ADDGs G1 and G2.

Outputs: Boolean value true if G1 and G2 are equivalent, false otherwise; in case of failure, it

reports the possible source of non-equivalence.

1: Find the set of IO-slices in each ADDG; find the characteristic formulae of the slices.

2: Use arithmetic simplification rule to the data transformation of the slices of G1 and G2.

3: Obtain the slice classes ensuring non-intersection of the dependence mapping domains of

the constituent slices and their characteristic formula in each ADDG; let HG1 and HG2 be

the respective sets of slice classes in both the ADDGs.

4: for each slice class g1 in HG1 do

5: gk = f indEquivalentSliceClass(g1, HG2).

6: /* This function returns the equivalent slice class of g1 in HG2 if found; otherwise

returns NULL. */

7: if gk = NULL then

8: return false and report g1 as a possible source of non-equivalence.

9: end if

10: end for

11: Repeat the above loop by interchanging G1 and G2.

12: return true.

6.3.3 An overview of the method

We now explain the basic steps of the method as given in Algorithm 9.

1. We first obtain the possible IO-slices of an ADDG with their characteristic for-

mulae comprising their dependence mappings and the data transformations. The

data transformation of a slice will be represented as a normalized expression.

The algebraic transformations based on associativity, commutativity and dis-

tributivity will be taken care of by the normalization process itself.

2. We then apply the simplification rule on the data transformations of the slices.

The effect of other arithmetic transformations such as, common sub-expression

elimination, constant folding, arithmetic expression simplification, etc., will be

handled by the simplification rule. After simplification of the data transforma-

tions, two equivalent slices have the same characteristic formula.

3. We then form slice classes by collecting the matching slices in an ADDG. We

6.4 Extension of the equivalence checking scheme to handle recurrences 119

now compute the characteristic formula of each slice class from its member

slices.

4. We now establish equivalence between slice classes of the ADDGs. The func-

tion f indEquivalentSliceClass in step 5 is used for this purpose. For each slice

class, this function tries to find its equivalent slice class in the other ADDG.

Corresponding to each slice class, the function uses the data transformation to

find the matching slice class in the other ADDG first and then compares the

respective dependence mappings.

6.4 Extension of the equivalence checking scheme to

handle recurrences

The discussion given in the previous section clearly reveals that an ADDG without

recurrence is basically a DAG which captures the data-dependence and the functional

computation of an array-intensive program. Presence of recurrences introduces cycles

into the ADDG and consequently, the equivalence checking strategy outlined so far

fails. Consider, for example, the following code snippet:

A[0] = B[0];

f or(i = 1; i < N; i++)

A[i] = A[i−1]+B[i];

The array element A[i], i≥ 0, has the value ∑
i
j=0 B[j], where the array B must have

been defined previous to this code segment (otherwise, the program would not fulfill

the requirement of having a valid schedule). As is evident from this example, it is not

possible to compute the characteristic formula of a slice involving recurrence(s) using

the present method. It is also not possible to obtain closed form representations of re-

currences in general. Even for the restricted class of programs for which ADDGs can

be constructed, it may not be always viable to obtain the corresponding closed form

representations mechanically from the recurrences. As a solution, we consider sepa-

ration of suitable subgraphs with cycles from the acyclic subgraphs of the ADDG. For

the subgraphs with cycles, the back edges are removed to make them acyclic. Once

120 Chapter 6 Loop and Arithmetic Transformations in the Presence of Recurrences

equivalence of the resulting acyclic subgraphs from the two ADDGs is established,

their corresponding original cyclic subgraphs may be replaced by identical uninter-

preted functions. This process results in transforming the original ADDGs to DAGs.

Now, the existing equivalence checking procedure of Karfa et al. [88], as described in

the previous section, is employed to check equivalence of the transformed ADDGs.

This technique to establish equivalence of subgraphs with cycles in ADDGs is now

illustrated through the following example borrowed from existing literature [154].

S1 : A[0] = In[0];

f or(i = 1; i < N; i++){
S2 : A[i] = f (In[i])+g(A[i−1]);

}
S3 : Out = A[N−1];

(a) Original program.

S1 : A[0] = In[0];

f or(i = 1; i < N; i++){
i f (i%2 == 0){

S2 : B[i] = f (In[i]);

S3 : C[i] = g(A[i−1]);

} else {
S4 : B[i] = g(A[i−1]);

S5 : C[i] = f (In[i]);

}
S6 : A[i] = B[i]+C[i];

}
S7 : Out = A[N−1];

(b) Transformed program.

Figure 6.6: An example of two programs containing recurrences.

Example 13. Let us consider the pair of equivalent programs involving recurrences

shown in Figure 6.6. The corresponding ADDGs shown in Figure 6.7 have cycles

since the array A has dependence upon itself.

Consider the subgraphs containing the cycles marked by the dotted lines in Fig-

ure 6.7(a) and Figure 6.7(b). Let the respective functional transformations computed

by the subgraphs be A[i]⇐ e1(In[i]) and A[i]⇐ e2(In[i]),0≤ i < N. For equivalence,

the equality e1(In[i]) = e2(In[i]) should hold for all i,0≤ i < N.

Suppose we proceed to prove the above equality by induction on i. For the basis

case, therefore, e1(In[0]) = e2(In[0]) should hold. It may be noted that the slices

indicated by the red edges in Figure 6.8(a) and Figure 6.8(b) depict respectively the

functional transformations A[0]⇐ e1(In[0]) and A[0]⇐ e2(In[0]) and hence proving

the basis case reduces to proving the equivalence of these two slice classes; we refer to

such slices as basis slices; in fact, since, in general, there may be several cases under

6.4 Extension of the equivalence checking scheme to handle recurrences 121

S3

S2

Out

A

S1

In

id = Identity function
F(In, A) = f(In) + g(A)

Fid

id

(a) Original ADDG.

S7

S6

Out

A

B C

In

f fg g

S1

S2 S4 S5 S3

+

id

id

(b) Transformed ADDG.

Figure 6.7: ADDGs for the programs given in Figure 6.6.

the proof of the basis step, we have basis slice classes together constituting a basis

subgraph.

For the induction step, let the hypothesis be e1(In[i]) = e2(In[i]),0 ≤ i < m. We

have to show that e1(In[m])= e2(In[m]). Now, let the transformed array A[0], . . . ,A[m−
1] be designated as A1[0], . . . ,A1[m−1]. Specifically, the induction hypothesis permits

us to assume that the parts of the array A over the index range [0,m−1] is identically

transformed and the induction step necessitates us to show that A1[m] is equivalent

based on this assumption. The slices indicated by the blue edges in Figure 6.8(a) and

Figure 6.8(b) capture the respective transformations of the m-th element (for any m)

and proving the inductive step reduces to proving the equivalence of these two slices;

accordingly, these respective slices in the two ADDGs are referred to as induction

slice classes. The general possibility of proof of the induction step by case analy-

sis is manifested by having several induction slice classes constituting an induction

subgraph.

Hence the method consists of breaking the cycles by removing the backward edges

identified in the depth-first traversal from the output array vertex, by incorporating a

new array of the same name in both the ADDGs and then proceeding as follows.

Removing the cycles will make the resulting subADDGs given in Figure 6.8(a)

122 Chapter 6 Loop and Arithmetic Transformations in the Presence of Recurrences

S2
A

S1

In A1

Fid

(a) Original subADDG.

S6
A

B C

In A1

f fg g

S1

S2 S4 S5 S3

+id

(b) Transformed subADDG.

Figure 6.8: Modified subADDGs corresponding to subgraphs marked by the dotted

lines in Figure 6.7.

Out

A

e1

In

Out

A

e2

In

(a) Original ADDG (b) Transformed ADDG

idid

Figure 6.9: Modified ADDGs with new uninterpreted function for the programs given

in Figure 6.6.

and Figure 6.8(b) DAGs thereby permitting application of the equivalence check-

ing scheme explained in Section 6.3.3. In the sequel, we refer to this scheme as

“ADDG_EQX11” to distinguish it from its enhanced version for handling recurrences.

The equivalence of these two subADDGs is established by showing the equivalence of

the basis slice classes (i.e., the red edged slice classes of the subADDGs in Figure 6.8)

first and then the equivalence of the induction slice classes (i.e., the blue edged slices).

The first task is simple because they have identical data transformation and index do-

mains in both the ADDGs.

The equivalence of the induction slice classes is shown as follows. For the ADDG

shown in Figure 6.8(a), MA,In = {[m]→ [m] | 1 ≤ m < N}, MA,A1 = {[m]→ [m−
1] | 1 ≤ m < N} and rA,{In,A1} = f (In) + g(A1). For the ADDG shown in Fig-

ure 6.8(b), MB,In = {[m]→ [m] | ∃k ∈ Z(m = 2× k),1 ≤ m < N}, MC,A1 = {[m]→

6.4 Extension of the equivalence checking scheme to handle recurrences 123

f or(i = 0; i <= 50; i++)

S1 : Z[2∗ i] = In[i];

f or(i = 1; i <= 99; i++)

S2 : Z[i] = Z[i−1]+Z[i+1];

Figure 6.10: An example where back edges exist in the absence of recurrence.

[m− 1] | ∃k ∈ Z(m = 2× k),1 ≤ m < N}, MB,A1 = {[m]→ [m− 1] | ∃k ∈ Z(m =

2× k+ 1),1 ≤ m < N}, MC,In = {[m]→ [m] | ∃k ∈ Z(m = 2× k+ 1),1 ≤ m < N},
MA,B = {[m]→ [m] | 1≤m < N}, MA,C = {[m]→ [m] | 1≤m < N}. Now we find that

r(1)A,{In,A1} = f (In)+g(A1) for the domain {[m] | ∃k ∈ Z(m = 2× k),1≤ m < N} and

r(2)A,{In,A1} = f (In)+g(A1) for the domain {[m] | ∃k ∈ Z(m = 2× k+1),1≤ m < N};
(the superfixes refer to the data transformations of the array elements referred through

the terms in the rhs expressions;) note that our normalization technique accommodates

the commutativity of the ’+’ operation. Since the data transformation is identical in

both the domains, they constitute a slice class with domain {[m] | 1≤m < N}. Hence,

we arrive at the same mapping and data transformation as that of Figure 6.8(a). Note

that the method automatically extracts two pairs of slice classes from the subADDGs

in Figure 6.8 – one corresponding to the basis cases and the other corresponding to

the inductions.

Having established that the two subgraphs with cycles in the respective ADDGs

are equivalent, we construct another pair of modified ADDGs as shown in Figure 6.9.

The ADDGs in Figure 6.9(a) and Figure 6.9(b) contain the new uninterpreted func-

tions e1 and e2, respectively, where e1 = e2. It is to be noted that scalar variables,

such as Out, are treated as array variables of unit dimension, i.e., Out is considered

as Out[0]. Now showing equivalence of the two entire ADDGs of Figure 6.9 (which

are basically DAGs) is straightforward by the ADDG equivalence checking method

(ADDG_EQX11) given in Section 6.3.3. �

Before formalizing the above mechanism, we underline the fact that while recur-

rences imply back edges in an ADDG, the converse is not true; we may have back

edges even when there is no recurrence. This is illustrated through the following ex-

ample.

Example 14. Consider the program segment given in Figure 6.10. While constructing

the ADDG corresponding to this program, there will be two back edges in the ADDG

for statement S2 corresponding to the two rhs terms Z[i−1] and Z[i+1]; however, note

124 Chapter 6 Loop and Arithmetic Transformations in the Presence of Recurrences

that statement S2 does not have any data dependency on itself since the whole of its

operand domain has already been defined in statement S1. These cases can be handled

within the framework of the equivalence checking method described in Section 6.3.3

by permitting computation of transitive dependence through the cycles only once and

then continuing through the other edges emanating from the array vertex Z.

Example 14 leads us to the following definition.

Definition 33 (Recurrence Array Vertex). An array vertex Z which is identified as the

destination of a back edge (of a cycle c) during a depth-first traversal of an ADDG

starting from an output array such that cDZ
⋂

cUZ 6= /0 is called a recurrence array

vertex.

Let us first elaborate what the above definition entails. Obviously, recurrences lead

to cycles and a back edge basically identifies the source of the recurrence namely, the

array Z which has been defined in terms of itself. Let the statement leading to the

recurrence in some program be

S : Z[l] = f (Y [r0],Z[r1],Z[r2],Z[r3]);

Let the symbol Z(i) represent the i-th occurrence of Z in the rhs of S. For Z to qual-

ify as a recurrence array vertex, (SM(d)
Z,Z(1)(IS) = SDZ)

⋂
(SM(u)

Z,Z(1)(IS) = SUZ(1)) 6= /0 or

SDZ
⋂

SUZ(2) 6= /0 or SDZ
⋂

SUZ(3) 6= /0 should hold (other arrays such as, Y , do not par-

ticipate in this procedure). In case the recurrence occurs through a cycle c involving

multiple statements, we shall have to consider the transitive dependences over c. This

check for overlapping definition and operand domains helps in segregating cases of

true recurrences from those as shown in Example 14.

As indicated in Example 13, for each recurrence array vertex, we need to find a

minimum subgraph with cycle(s) so that the computed values of the recurrence array

elements can be captured by an uninterpreted function with proper arguments. Finding

such minimum subgraphs with cycles in an ADDG involves prior identification of

strongly connected components (SCCs) in the ADDG.

Definition 34 (Basis Subgraph B(Z,{Y i
1, . . . ,Y

i
ki
,ki ≥ 1,1≤ i≤m}) for the recurrence

array vertex Z). Let C (Z) be an SCC in the ADDG having Z as the recurrence ar-

ray vertex. Let ei = 〈Z, fi〉,1 ≤ i ≤ m, be m write edges which are not contained

in C (Z); also, let 〈 fi,Y i
1〉, . . . ,〈 fi,Y i

ki
〉,ki ≥ 1, be all the existing read edges emanat-

ing from the operator vertex fi in the ADDG. The subgraph B(Z,{Y i
1, . . . ,Y

i
ki
,ki ≥

6.4 Extension of the equivalence checking scheme to handle recurrences 125

1,1 ≤ i ≤ m}) containing the array vertex Z, all such operator vertices fi,1 ≤ i ≤
m, and the corresponding array vertices Y i

1, . . . ,Y
i
ki

along with the connecting edges

〈Z, fi〉,〈 fi,Y i
1〉, . . . ,〈 fi,Y i

ki
〉 is called a basis subgraph. For brevity, we represent such a

basis subgraph as B(Z,Y), where Y represents the set {Y i
1, . . . ,Y

i
ki
,ki ≥ 1,1 ≤ i ≤ m}

ordered using a consistent ordering of all the array names used in the program.

Note that the subgraph B(Z,Y) is the minimum subgraph that encompasses the

basis step(s) of a recurrence involving the recurrence array Z in the program. The

arrays Y i
j ,1 ≤ j ≤ ki,1 ≤ i ≤ m, in Y need not be all distinct. If there are multiple

basis steps with different data transformations, then there will be multiple basis slice

classes; it is to be noted that all such basis slice classes are collectively covered in

B(Z,Y).

Definition 35 (Induction Subgraph D(Z,{T i
1, . . . ,T

i
ki
,ki ≥ 1,1≤ i≤m}, {W i

1, . . . ,W
i
ki
,

ki ≥ 1,1 ≤ i ≤ n}) for the recurrence array vertex Z). Let C (Z) be an SCC in the

ADDG having Z as the recurrence vertex.

1) Let ei = 〈Xi,hi〉,1 ≤ i ≤ m, be m write edges where Xi(6= Z) is an array vertex in

C (Z) such that ei is not contained in C (Z); also, let 〈hi,T i
1〉, . . . ,〈hi,T i

ki
〉,ki≥ 1,1≤ i≤

m, be all the existing read edges emanating from the operator vertex hi in the ADDG.

Let the connected subgraph containing C (Z) along with the vertices hi,T i
1, . . . ,T

i
ki
,ki≥

1,1≤ i≤ m, be designated as D ′(Z,T i
1, . . . ,T

i
ki
,ki ≥ 1,1≤ i≤ m).

2) Let gi,1 ≤ i ≤ n, be n operator vertices in C (Z) such that there is a read edge e

emanating from gi which is not contained in C (Z); also, let 〈gi,W i
1〉, . . . ,〈gi,W i

k′i
〉,k′i ≥

1,1 ≤ i ≤ n, be all the existing read edges emanating from the operator vertex gi in

the ADDG which are not already covered in C (Z); the connected subgraph containing

D ′(Z,T i
1, . . . ,T

i
ki
,ki ≥ 1,1≤ i≤m) along with all such array vertices W i

1, . . . ,W
i
k′i
,k′i ≥

1,1 ≤ i ≤ n, is called an induction subgraph and is represented as D(Z,V), where

V is the set {T i
1, . . . ,T

i
ki
,ki ≥ 1,1≤ i≤ m}

⋃
{W i

1, . . . ,W
i
k′i
,k′i ≥ 1,1≤ i≤ n}) ordered

using a uniform ordering of all the array names used in the program.

Note that the subgraph D(Z,V) is the minimum subgraph that encompasses the

induction step(s) of a recurrence involving the array Z in the program. Once the in-

duction subgraph is found, we do not need to distinguish between the arrays marked as

T ’s and W ’s; hence they are jointly denoted as V . The arrays T i
j ,1≤ j≤ ki,1≤ i≤m,

and W i
j ,1 ≤ j ≤ ki,1 ≤ i ≤ n, in V need not be all distinct. If there are multiple in-

duction steps with different data transformations, then there will be multiple induction

126 Chapter 6 Loop and Arithmetic Transformations in the Presence of Recurrences

slice classes; it is to be noted that all such induction slice classes are collectively cov-

ered in D(Z,V).

Definition 36 (Recurrence Subgraph E(Z,Y ,V}) for the basis subgraph B(Z,Y) and

the induction subgraph D(Z,V)). The subgraph E(Z,Y ,V) which is obtained by com-

bining a basis subgraph B(Z,Y) and an induction subgraph D(Z,V) having the same

recurrence array vertex Z in an ADDG is called a recurrence subgraph.

Note that the subgraph E(Z,Y ,V) is the minimum subgraph that encompasses the

recurrence involving the array Z in the program.

Figure 6.11(a) shows a schema of a program involving a recurrence and Fig-

ure 6.11(b) shows its ADDG representation; note that we have shown a single back

edge from the operator vertices g1 and gp instead of m such back edges for clarity;

the corresponding basis subgraph and the induction subgraph have been given in Fig-

ure 6.12(a) and Figure 6.12(b), respectively.

In order to compare two recurrence subgraphs, E1(Z,Y1,V1) and E2(Z,Y2,V2),

say, from two different ADDGs, and represent them as uninterpreted functions sub-

sequently, the arguments Y and V must be identical, i.e., Y1 = Y2 and V1 = V2 have

to hold. In case they do not hold, we identify the uncommon arrays, i.e., arrays that

appear in only one of the ADDGs but not both, occurring in Yi and Vi, i ∈ {1,2};
for each such array, T say, we identify the minimum subgraph GT (T,XT), say (with

T as the start array vertex and XT as the terminal array vertices), where XT com-

prises only common arrays, i.e., arrays that appear in both the ADDGs. If T ∈ Yi

(Vi), then the basis subgraph Bi(Z,Yi) (induction subgraph Di(Z,Vi)) is extended by

including GT and treat the resulting subgraph as the basis subgraph (induction sub-

graph) for establishing equivalence of the two ADDGs. Algorithm 10 captures this

process, where the module “extendSubgraph” basically extends the passed recurrence

subgraph along each uncommon array vertex A by including all edges of the form

〈A, fi〉 and 〈 fi,Xi〉,1≤ i≤ p,; this process of extension is repeated for each uncommon

array vertex Xi,1 ≤ i ≤ p, until each of the terminal nodes of the extended subgraph

is a common array vertex.

For example, from Figure 6.7(b), we shall get an SCC C (A), say, comprising the

vertices (A, +, B, C, gS4, gS3) with A designated as the recurrence array vertex; the

corresponding basis subgraph B(A, In) comprises the vertices {A, idS1, In} and the

6.4 Extension of the equivalence checking scheme to handle recurrences 127

Z[0] = f1(Y 1
1 [j

1
1], . . . ,Y

1
k1
[j1

k1
]);

...

Z[m] = fm(Y m
1 [jm

1], . . . ,Y
m
km
[jm

km
]);

f or(i = m+1, i≤ N; i++) {
i f (Cond(i)) {

X1[i] = g1(Z[0], . . . ,Z[m],W 1
1 [i], . . . ,W

1
l1
[i]);

...

Xp[i] = gp(Z[0], . . . ,Z[m],W p
1 [i], . . . ,W

p
lp
[i]);

} else {
X1[i] = h1(T 1

1 [i], . . . ,T
1

d1
[i]);

...

Xp[i] = hp(T
p

1 [i], . . . ,T p
dp
[i]);

}
Z[i] = h(X1[i], . . . ,Xp[i]);

}

(a)

Z

Y 1
1 Y m

km
Y m

1

f1 fm

Y 1
k1

. . . .

.

h1

. . .

hp

. . .

gp

. . .

g1

. . .

.

h

XpX1

W p
lp

W p
1T p

dp
T p

1T 1
d1

T 1
1W 1

l1W 1
1

(b)

Figure 6.11: (a) Original program. (b) Corresponding ADDG.

128 Chapter 6 Loop and Arithmetic Transformations in the Presence of Recurrences

Z

Y 1
1 Y m

km
Y m

1

f1 fm

Y 1
k1

. . . .

.

(a)

Z

h1

. . .

hp

. . .

gp

. . .

g1

. . .

.

h

XpX1

W p
lp

W p
1T p

dp
T p

1T 1
d1

T 1
1W 1

l1W 1
1

(b)

Figure 6.12: (a) Basis subgraph. (b) Induction subgraph corresponding to Figure 6.11.

S6
A

B C

In A1

f g

S2 S3

+

S6
A

B C

In A1

fg

S4 S5

+

A

In

S1

(b) (c)

id

Figure 6.13: (a) Basis slice. (b) Valid induction slice 1. (c) Valid induction slice 2,

corresponding to Figure 6.8(b).

6.4 Extension of the equivalence checking scheme to handle recurrences 129

Algorithm 10 extendRecurrenceSubgraph (ADDG G, Subgraph E(Z,Y ,V), List L)
Inputs: An ADDG G, a recurrence subgraph E(Z,Y ,V) and a list L of common arrays (in-

cluding the input and the output arrays).

Outputs: An extended recurrence subgraph E ′(Z,Y ′,V ′) whose each terminal array vertex

belonging to Y ′ or V ′ is a common array belonging to L.

1: Set A ←{Y}
⋃
{V}.

2: Let Y ′← Y ; V ′←V ; B ′(Z,Y ′)← B(Z,Y) and D ′(Z,V ′)←D(Z,V).

3: for all T ∈ (A−L) do

4: GT (T,XT)← extendSubgraph (G, E , T).

5: if T ∈ Y then

6: Let Y ′← Y ′{T ← XT};
/* In the ordered tuple Y ′, each member of T is substituted with a subtuple of XT and

then the whole tuple is ordered using the consistent ordering of all the array names

of L. */

B ′(Z,Y ′)← compose (B ′(Z,Y ′), GT (T,XT)).

7: else

8: Let V ′←V ′{U ← XU};
D ′(Z,V ′)← compose (D ′(Z,V ′), GT (T,XT)).

9: end if

10: end for

11: Let Y ← Y ′; V ←V ′;

E ′(Z,Y ′,V ′)← compose (B ′(Z,Y ′), D ′(Z,V ′)).
12: return E ′(Z,Y ′,V ′).

connecting edges; the corresponding induction subgraph D(A, In) comprises C (A),

the vertices { fS2 , fS5 , In} and the connecting edges. The recurrence subgraph E(A, In)

is obtained by taking a union of the vertices and edges in B(A, In) and D(A, In). Al-

though B and C are uncommon arrays, extraction of the minimum induction subgraph

itself will not identify them as terminal arrays due to clause (1) of Definition 35; no

extra extension step will be needed.

The method initially finds five slices corresponding to the subADDG given in Fig-

ure 6.8(b) as given below (in terms of the involved statements): g1 = 〈S1〉, g2 =

〈S6,S2,S5〉, g3 = 〈S6,S2,S3〉, g4 = 〈S6,S4,S5〉, g5 = 〈S6,S4,S3〉. However, out of

these five slices, slices g2 and g5 are deemed invalid because they contain conflicting

conditions, namely i%2 == 0 and i%2 ! = 0, in the dependence mapping g2MA,In

and g5MA,A1, respectively. Thus, the validity of an induction slice is to be checked be-

130 Chapter 6 Loop and Arithmetic Transformations in the Presence of Recurrences

fore it is added to the respective set of induction slice classes. Note that the function

module “compose” prunes such invalid slices. The basis slice and the valid induction

slices have been shown in Figure 6.13.

It is to be noted that the method of [154] resolves the equivalence of the data

transformations of the two programs shown in Figure 6.6 by comparing all possible

permutations of the involved commutative operator (+ in this case). This method,

however, would not have been successful in establishing equivalence if the statement

S2 in Figure 6.6(a) had been replaced by S2 : A[i] = f (In[i])+ g(A[i− 1])+ 4; and 2

had been added to each of the rhs expressions in the statements S2,S3,S4 and S5 in

Figure 6.6(b) (e.g., statement S2 in Figure 6.6(b) was replaced by S2 : B[i] = f (In[i])+

2;). Our method, unlike that of [154] which only checks syntactic equivalence of the

operands, can show the equivalence even under such a scenario since it employs the

normalization technique of [88] to check equivalence of arithmetic transformations.

Our overall equivalence checking method is now presented in Algorithm 11, where

the function module “getRecurrenceSubgraph” is responsible for identifying true re-

currences and excluding those SCCs which may have been generated by cases such

as in Example 14; the module “obtainDAG” takes a (cyclic) recurrence subgraph

E(Z,Y ,V) as input, produces a subgraph E ′(Z,Y ,V ,Z1) by replacing all back edges

of the form 〈 f ,Z〉 by 〈 f ,Z1〉 in E ′ and copies the dependence mappings E1MZ,Z as

E ′1MZ,Z1, where Z1 is a new array vertex (not already present in the ADDG); the

function module “replaceRecurrenceSubgraphByUF” takes an ADDG G, a recurrence

subgraph E(Z,Y ,V) and an uninterpreted function f as input and replaces the recur-

rence subgraph E(Z,Y ,V) in G by a directed acyclic subgraph H (Z,Y ,V) having a

start vertex Z, terminal vertices Y and V , a single operator f , write edge 〈Z, f 〉 and a

set {〈 f ,Yi〉,Yi ∈Y}
⋃
{〈 f ,Vi〉,Vi ∈V} of read edges; the mappings H MZ,Y and H MZ,V

are kept the same as E MZ,Y and E MZ,V , respectively.

6.5 Correctness and complexity 131

Algorithm 11 equivalenceChecker (ADDG G1, ADDG G2)
Inputs: Two ADDGs G1 and G2.

Outputs: Boolean value true if G1 and G2 are equivalent, false otherwise; in case of failure, it reports

the possible source of non-equivalence.

1: Set L← findCommonArrays (G1, G2); G′i← Gi, i ∈ {1,2}.
2: Set Ci of SCCs← findStronglyConnectedComponents (Gi), i ∈ {1,2}.
3: for each SCC c1(Z1) ∈ C1 do
4: e1(Z1,Y1,V1)← getRecurrenceSubgraph (G1, c1(Z1));

e′1(Z1,Y1
′
,V1
′
)← extendRecurrenceSubgraph (G1, e1(Z1,Y1,V1), L);

e′′1(Z1,Y1
′
,V1
′
,Z11)← obtainDAG (e′1(Z1,Y1

′
,V1
′
)).

5: end for
6: for each c2(Z2) ∈ C2 do
7: e2(Z2,Y2,V2)← getRecurrenceSubgraph (G2, c2(Z2));

e′2(Z2,Y2
′
,V2
′
)← extendRecurrenceSubgraph (G2, e2(Z2,Y2,V2), L);

e′′2(Z2,Y2
′
,V2
′
,Z12)← obtainDAG (e′2(Z2,Y2

′
,V2
′
)).

8: end for
9: for each e′′1(Z1,Y1

′
,V1
′
,Z11) do

10: for each e′′2(Z2,Y2
′
,V2
′
,Z12) do

11: if Z1 = Z2∧Y1
′
= Y2

′∧V1
′
=V2

′∧
ADDG_EQX11 (e′′1(Z1,Y1

′
,V1
′
,Z11), e′′2(Z2,Y2

′
,V2
′
,Z12)) = true then

12: G′1← replaceRecurrenceSubgraphByUF (G′1, e′1(Z1,Y1
′
,V1
′
), f). /* where f is some new

uninterpreted function */

13: G′2 ← replaceRecurrenceSubgraphByUF (G′2, e′2(Z2,Y2
′
,V2
′
), f). /* here f is the same

uninterpreted function as in the previous step */

14: end if
15: end for
16: if no match for e′′1(Z1,Y1

′
,V1
′
,Z11) is found then

17: return false and report e′′1(Z1,Y1
′
,V1
′
,Z11) as a possible source of non-equivalence.

18: end if
19: end for
20: if some e′′2(Z2,Y2

′
,V2
′
,Z12) exists which is not found to have equivalence with any

e′′1(Z1,Y1
′
,V1
′
,Z11) then

21: return false and report e′′2(Z2,Y2
′
,V2
′
,Z12) as a possible source of non-equivalence.

22: end if
23: if ADDG_EQX11 (G′1, G′2) = true then
24: return true.

25: else
26: return false and report the slice class in an ADDG which has no equivalent slice class in the

other ADDG.

27: end if

132 Chapter 6 Loop and Arithmetic Transformations in the Presence of Recurrences

DMZ,V = D ′MZ,VBMZ,Y

BDZ

BUY

EDZ

DUV = D ′UV

DDZ = D ′DZ

Figure 6.14: Relationship between different domains.

6.5 Correctness and complexity

6.5.1 Correctness

Theorem 10 (Soundness). Let E1(Z,Y ,V) be a recurrence subgraph of the ADDG G1

of the source program P1 and E2(Z,Y ,V) be a recurrence subgraph of the ADDG G2

of the transformed program P2 with identical parameters Z,Y and V . Let E1(Z,Y ,V)

have the basis subgraph B1(Z,Y) and the induction subgraph D1(Z,V); similarly,

let B2(Z,Y) and D2(Z,V) respectively be the basis and the induction subgraphs of

E2(Z,Y ,V). Let Σ1 = {Y [dY],dY ∈ B1UY , the used domain of Y in B1}
⊎
{V [dV],dV ∈

D1UY , the used domain of V in D1}. Similarly, let Σ2 = {Y [dY],dY ∈ B2UY , the used

domain of Y in B2}
⊎
{V [dV],dV ∈D2UY , the used domain of V in D2}. Let the function

defined over the elements of Σ1 yielding values for Z[d],d ∈ E1DZ , be represented as

e1 and the function defined over the elements of Σ2 yielding values for Z[d],d ∈ E2DZ ,

be represented as e2. Let the directed acyclic (DA)-ADDGs corresponding to the

subgraphs D1(Z,V) and D2(Z,V) be D ′1(Z,V ,Z1) and D ′2(Z,V ,Z1), respectively.

If the equivalence checker ADDG_EQX11 ascertains that B1(Z,Y) ' B2(Z,Y) and

D ′1(Z,V ,Z1)'D ′2(Z,V ,Z1), then e1 = e2.

Proof: Figure 6.14 shows the relationship between different domains in a recur-

rence subgraph. Consider any element d ∈ E1DZ . By the single assignment (SA)

property of the program P1, B1DZ and D1DZ constitute a partition of E1DZ; hence, we

6.5 Correctness and complexity 133

have the following two mutually exclusive cases: (1) d ∈ B1DZ and (2) d ∈ D1DZ . We

carry out proof by cases.

Case 1 [d ∈ B1DZ]: Here,

Z[d] = e1(Y [dY]), for some dY = B1MZ,Y (d) ∈ B1UY

= rB1(Y [dY]), where rB1 is the data transformation of the subgraph B1

= rB2(Y [d
′
Y]), for some d′Y = B2MZ,Y (d

′) ∈ B2UY

= e2(Y [d′Y]), since the equivalence checker ADDG_EQX11 ascertains

B1(Z,Y)' B2(Z,Y), it must have found rB1 = rB2 over the domain

{Y [dY],dY ∈ B1UY = B2UY} and

B1MZ,Y = B2MZ,Y over the domains B1DZ = B1DZ

Thus, dY = B1MZ,Y (d) = B2MZ,Y (d
′) = d′Y . Hence, from the soundness of DA-ADDG

equivalence checker, e1(Y [dY]) = e2(Y [dY]), ∀dY ∈ B1UY = B2UY .

Case 2 [d ∈ D1DZ]: Here,

Z[d] = e1(V [dV]), where dV = D1MZ,V (d) = D ′1MZ,V (d) ∈ D1UV ,

since by construction of the directed acyclic version D ′1 of D1,

D1MZ,V = D ′1MZ,V over the domain D1DZ = D ′1DZ

= rD ′1(V [dV],Z1[dZ1]), for some dZ1 ∈ D ′1UZ1 . . .(i)

However, D ′1UZ1(= D1UZ1) ⊆ B1DZ
⋃

D ′1DZ (owing to recurrence). Because of SA

property of the program(s), B1DZ
⋂

D ′1DZ = /0. Hence we have the following two (mu-

tually exclusive) subcases: (2.1) dZ1 ∈ B1DZ and (2.2) dZ1 ∈ D ′1DZ .

134 Chapter 6 Loop and Arithmetic Transformations in the Presence of Recurrences

Subcase 2.1 [dZ1 ∈ B1DZ]: So, continuing from (i) we have,

Z[d] = e1(V [dV])

= rD ′1(V [dV],Z1[dZ1])

= rD ′1(V [dV],rB1(Y [dY]))

= rD ′2(V [dV],rB2(Y [dY]))

= e2(V [dV]), for some dV = B1MZ,Y (d) = B2MZ,Y (d)

since the equivalence checker ADDG_EQX11 finds B1MZ,Y (d) = B2MZ,Y (d),

rB1 = rB2 over {Y [dY],dY ∈ B1MZ,Y (B1DZ) = B2MZ,Y (B2DZ)} and

rD ′1 = rD ′2 over {V [dV],dV ∈ D1UV = D ′1UV}×{Z1[dz1],dz1 ∈ D ′1UZ1}

Therefore, e1 = e2 for this subcase.

Subcase 2.2 [dZ1 ∈ D ′1DZ]: It may be noted that from Definition 33 (recurrence

array vertex) D1DZ
⋂

D1UZ1 = D ′1DZ
⋂

D ′1UZ1 6= /0, i.e., some elements of Z defined

through D1 are used in defining further elements of Z in D1 itself. Specifically,

equation (i) Z[d] = e1(V [dV]) = rD ′1(V [dV],Z1[dZ1]) depicts that in order to prove

that Z[d] evaluated through e1 is the same as that evaluated through e2, we need to

assume that in D ′1, the evaluation of Z[dZ1] (= Z1[dZ1]) should precede the evalu-

ation of Z[d], and likewise, in D ′2. Such an assumption is nothing but the induc-

tion hypothesis. (This aspect justifies the nomenclature of the subgraphs D1 and D2

as the induction subgraphs because it supports the inductive step in the analysis of

a recurrence.) In other words, an ordering over the elements of D ′1DZ (= D ′2DZ) is

needed for validation of e1 = e2. Towards this, let us consider the following relation:

∀d1,d2 ∈ D ′1DZ (= D ′2DZ), d1 ≺ d2, if the computation of the value of Z[d2] depends

upon the computation of that of Z[d1]
2.

Assuming that ∀d′ ≺ d, Z[d′] (= Z1[d′]) are evaluated identically by D ′1 and D ′2,

i.e.,
2Such a definition essentially implies that there is a valid schedule, which is supported by the re-

strictions given in Section 6.2.

6.5 Correctness and complexity 135

Z[d′] = e1(V [d′V]) = e2(V [d′V]), we have

Z[d] = e1(V [dV])

= rD ′1(V [dV],Z1[dZ1])

= rD ′1(V [dV],e1(V [d′V])), where d′V = D1MZ,V (d) = D2MZ,V (d)

= rD ′2(V [d′V],e2(V [d′V]))

= e2(V [d′V]), by induction hypothesis and by the equivalence

checker ADDG_EQX11 applied on D ′1 and D ′2

Hence, e1 = e2 over the defined domain D ′1DZ1 =D ′2 DZ1. �

6.5.2 Complexity

Let us determine the worst case time complexity of all the steps involved in Algo-

rithm 11. Note that the analysis has been done assuming the number of arrays in each

ADDG is a, the number of statements (write edges) is s, the maximum arity of a func-

tion is t and the number of recurrence subgraphs is γ.

Step 1: Finding the set of common arrays takes a2 time and copying each ADDG takes

O(V +E), i.e., O((a+ s)+(a+ s× t)) time.

Step 2: This step basically involves identification of SCCs in a directed graph using

Tarjan’s algorithm [148], which can be done in a depth-first traversal of the graph.

Therefore, this step also requires O(V +E) = O((a+ s)+(a+ s× t)) time.

Steps 3—5: Each of the three functions mentioned in step 4 requires a depth-first

traversal of the ADDG; therefore, the loop takes O(γ× ((a+ s)+(a+ s× t))) time.

Steps 6—8: Similar to the steps 3—5.

Steps 9—19: In step 11, checking whether the arrays involved in two recurrence sub-

graphs are identical takes O(a2) time. Note that the complexity of comparing two

normalized expressions is O(2‖F‖), where ‖F‖ is the length of a normalized formula

in terms of its constituent variables and operators [88]. However, representing the

data transformation of the elements of the output array of a subgraph in terms of the

elements of the input arrays of that subgraph may require substitution of the interme-

diate temporary arrays in a transitive fashion, which takes O(a2×2‖F‖) time [88]. For

finding the transitive dependence and the union of the mappings, ISL [152] has been

used, whose worst case time complexity is the same as the deterministic upper bound

136 Chapter 6 Loop and Arithmetic Transformations in the Presence of Recurrences

on the time required to verify Presburger formulas, i.e., O(222n
), where n = O(t× a)

is the length of the formula; the worst case behaviour, however, is never exhibited

in our experiments. Since we replace the recurrence subgraphs (except for the re-

currence vertex and the input array vertices) with an operator vertex representing an

uninterpreted function along with the edges connecting this operator vertex with the

recurrence vertex and the input array vertices, step 12 takes O(V) = O(a+ s) time

for each ADDG. We have to compare the data transformations of pairs of recurrence

subgraphs, one from each ADDG; thus, the loop encompassing the steps 9–19 takes

O(g× (2‖F‖+a2×2‖F‖)) time.

Steps 20—22: This step simply reports a failure case; however, in the worst case, the

faulty recurrence subgraph may cover almost the entire ADDG; thus, this step may

also require O(V +E) = O((a+ s)× (a+ s× t)) time.

Steps 23—27: In step 23, the verifier of [88] is invoked; therefore, the time complex-

ity of these steps is O(kn×x× (2‖F‖+ a2× 2‖F‖)+ k2×n×x× 2‖F‖) in the worst case

as reported in [88], where n is the number of branching blocks in the control flow

graph of the program, k is the maximum branches in a branching block and x is the

maximum number of arrays defined in a branch. Since this is the costliest step in the

entire algorithm, the worst case time complexity of Algorithm 11 is identical to the

one reported in [88].

6.6 Experimental results

Our method has been implemented in the C language and run on a 2.0 GHz Intel R©

CoreTM2 Duo machine. The tool is available at http://cse.iitkgp.ac.in/~chitta/pubs/

EquivalenceChecker_ADDG.tar.gz along with the benchmarks, installation and us-

age guidelines. It first constructs the ADDGs from the original and the transformed

behaviours written in C and then applies our method to establish the equivalence be-

tween them. The tool has been tested on some benchmarks. The characteristics of

the benchmarks and the time taken to establish equivalence by our tool and by those

of [154] and [88] are given in Table 6.1; note that the symbol × has been used when-

ever a tool failed to establish the required equivalence. The benchmarks have been ob-

tained by manually applying different transformations to the programs of Sobel edge

detection (SOB), Debaucles 4-coefficient wavelet filter (WAVE), Laplace algorithm

to edge enhancement of northerly directional edges (LAP), linear recurrence solver

http://cse.iitkgp.ac.in/~chitta/pubs/EquivalenceChecker_ADDG.tar.gz
http://cse.iitkgp.ac.in/~chitta/pubs/EquivalenceChecker_ADDG.tar.gz

6.6 Experimental results 137

Table 6.1: Results on some benchmarks

Sl C lines loops arrays slices Exec time Exec time Exec time

No Benchmark src trans src trans src trans src trans (sec) [154] (sec) [88] (sec) [Our]

1 ACR1 14 20 1 3 6 6 1 1 0.18 0.76 0.28

2 LAP1 12 28 1 4 2 4 1 2 0.28 9.25 0.55

3 LIN1 13 13 3 3 4 4 2 2 0.12 0.62 0.24

4 LIN2 13 16 3 4 4 4 2 3 0.13 0.74 0.30

5 SOR 26 22 8 6 11 11 1 1 0.18 1.08 0.68

6 WAVE 17 17 1 2 2 2 4 4 0.31 6.83 0.53

7 ACR2 24 14 4 1 6 6 2 1 × 0.98 0.36

8 LAP2 12 21 1 3 2 4 1 1 × 2.79 0.35

9 LAP3 12 14 1 1 2 2 1 2 × 4.82 0.56

10 LOWP 13 28 2 8 2 4 1 2 × 9.17 0.63

11 SOB1 27 19 3 1 4 4 1 1 × 1.79 0.61

12 SOB2 27 27 3 3 4 4 1 1 × 1.85 0.57

13 EXM1 8 14 1 1 2 4 1 3 0.14 × 0.36

14 EXM2 8 15 1 1 3 5 1 3 0.19 × 0.48

15 SUM1 8 14 1 1 2 4 1 3 × × 0.40

16 SUM2 16 19 4 4 4 6 2 4 × × 0.72

17 MUTR 12 12 2 2 4 4 3 3 × × 0.62

(LIN), successive over-relaxation (SOR), computation across (ACR), low-pass filter

(LOWP), modified versions of the example given in Figure 6.6 (EXM), summation

of the elements of different input arrays (SUM) and an example of mutual recursion

(MUTR). Note that all the tools succeeded in showing equivalence for benchmarks

1–6 which involved only loop transformations; the tool of [154] failed to establish

equivalence for benchmarks 7–12 because they contained arithmetic transformations

as well; the tool of [88] failed for benchmarks 13–14 because they involved loop

transformations along with recurrences and both the tools of [154] and [88] failed

for benchmarks 15–17 because they involved both arithmetic transformations and re-

currence; only our tool succeeded in showing equivalence in all the cases. Although

a comparative analysis with the method of [144] would have also been relevant, we

could not furnish it since their tool is not available to us. To find out the set of loop

transformations and arithmetic transformations supported by our tool, the readers are

referred to [88]. A pertinent point to note is that although our tool outperforms that

of [88] with respect to execution time whenever both the tools are able to establish

138 Chapter 6 Loop and Arithmetic Transformations in the Presence of Recurrences

equivalence, the tool of [154] takes about 2.5 times less execution time than that of

ours whenever it is successful – this is probably because our tool invokes ISL [152]

through system call and communicates with it via reading and writing to files whereas,

ISL comes as an integrated package within [154] itself and hence it is faster.

6.7 Conclusion

Loop and arithmetic transformations are applied extensively in embedded system de-

sign to minimize execution time, power, area, etc. An ADDG based equivalence

checking method has been proposed in [86, 88] for translation validation of programs

undergoing such transformations. This method, however, cannot be applied to verify

programs that involve recurrences because recurrences lead to cycles in the ADDGs

which render currently available dependence analyses and arithmetic simplification

rules inadmissible. Another verification technique [153, 154] which can verify pro-

grams with recurrences does not handle arithmetic transformations. The validation

scheme proposed in this chapter isolates the suitable subgraphs (arising from recur-

rences) in the ADDGs from the acyclic portions and treats them separately; each cyclic

subgraph in the original ADDG is compared with its corresponding subgraph in the

transformed ADDG in isolation and if all such pairs of subgraphs are found equiva-

lent, then the entire ADDGs, with the subgraphs replaced by designated uninterpreted

functions of proper arities, are compared in the usual manner of [88]. The soundness

and the complexity of the method have been formally treated. The experimental re-

sults demonstrate the efficacy of the method. Our method, however, cannot resolve

equivalence in the presence of recurrences that employ reductions [75] because re-

ductions involve accumulations of a parametric number of sub-expressions using an

associative and commutative operator. In our future work, we intend to alleviate the

current limitation of the method to handle a more general class of programs.

Chapter 7

Conclusion and Scope for Future
Work

Application of faulty code optimizations may proliferate as software bugs; hence it

is crucial to perform translation validation. To meet this objective, some equivalence

checking techniques have been developed and implemented by us to verify several

code optimizations. In this chapter, we first briefly summarize the contributions of the

work presented in the thesis. Next, we discuss several possible directions/extensions

for future research.

7.1 Summary of contributions

Translation validation of code motion transformations: Code motion transfor-

mations are widely used to improve the performance of programs [48, 65, 66, 82].

Consequently, a lot of investigation has been devoted for verifying such transforma-

tions [95, 100, 104, 110]. Of the different techniques available for verification of code

motion transformations, the path extension based technique [90, 91, 95, 110] which

models programs as FSMDs [58] has been particularly encouraging since it has been

successful in verifying code motion transformations in the presence of non-structure

preserving transformations, i.e., transformations which alter control structures of pro-

grams, such as those introduced by path based schedulers [33, 135]. Moreover, this

technique handles a wide range of arithmetic transformations by employing a normal-

139

140 Chapter 7 Conclusion and Scope for Future Work

ization technique [141] that tries to reduce two computationally equivalent expres-

sions to a syntactically identical form. The path extension based approach, however,

fails in case of verifying code motions across loops because a path, by definition,

cannot be extended beyond a loop [56]. Hence, our initial objective was to develop

an equivalence checking method that alleviates this drawback of the path extension

based approach while retaining all its benefits. We have developed a symbolic value

propagation based equivalence checking method for FSMDs that stores the differ-

ence between the data computations of a pair of paths (obtained from two different

FSMDs whose equivalence we seek to validate) as propagated vectors and propa-

gates these vectors to all the paths originating from the end states of the original path

pair. This process is repeated until all the mismatches encountered have been com-

pensated for during subsequent traversal of the FSMDs; if no mismatch is identified

when the final paths of the two FSMDs have been traversed, then we declare them as

equivalent; otherwise, we rule them as possibly non-equivalent. Note that equivalence

checking of flowchart schemas being an undecidable problem, completeness cannot

be assured. However, the soundness and the termination of our method have been

formally proved. To examine whether our symbolic value propagation based equiva-

lence checking is superior to path extension based equivalence checking, we initially

compared our tool with that of [95] for three different compilers namely, a synthe-

sis tool for structured datapaths [117], a path based scheduler [33] and a high-level

synthesis tool SPARK [64]. For all three compilers, our tool required less time on an

average to establish equivalence than that of [95]. Next, we compared our tool with

that of [90], which is an improvised method of [95], that can additionally handle non-

uniform code motions; our tool was found to take considerably less amount of time

in establishing equivalence for all the benchmarks reported in [90]. Finally, we sub-

jected some benchmarks to SPARK followed by the path based scheduler to perform

optimizations in two successive steps; for those test cases where the target code was

produced from the source code by means of code motions across loops, only our tool

could prove the equivalence. It is important to note that the computational complexity

of the symbolic value propagation based method has been analyzed and found to be no

worse than that for path extension method [90], i.e., our symbolic value propagation

method is capable of handling more sophisticated transformations than [90] without

incurring any extra overhead of time complexity.

Deriving bisimulation relations from path based equivalence checkers: Trans-

7.1 Summary of contributions 141

lation validation by means of deriving bisimulation relations between programs has

been an actively persuaded field of study [103, 104, 126]. Meanwhile, translation

validation through path based equivalence checking has also received similar atten-

tion [22, 90, 95, 110]. Both these techniques have been popular because they pro-

vide benefits which are exclusive to each, while suffering from distinctive draw-

backs. Specifically, bisimulation based methods [103, 104] can handle loop shift-

ing [44], which no path based approach can handle till date, whereas, path based

approaches [22, 90, 95, 110] are adept in handling non-structure preserving transfor-

mations; furthermore, path based approach guarantees termination which bisimulation

based approach cannot. However, the conventionality of bisimulation as the approach

for equivalence checking raises the natural question of examining whether path based

equivalence checking yields a bisimulation relation or not. In this thesis, we have

presented mechanisms to derive bisimulation relations from the outputs of the path

extension based equivalence checker and the symbolic value propagation based equiv-

alence checker whenever two FSMDs are found to be equivalent by these checkers. It

is to be noted that none of the bisimulation relation based approaches has been shown

to tackle code motions across loops; therefore, the present work demonstrates, for the

first time, that a bisimulation relation exists even under such a context.

Translation validation of code motion transformations in array-intensive pro-
grams: The FSMD model does not support arrays. As a result, the verifiers built

upon this model are rendered inapplicable while verifying code motion transforma-

tions in array-intensive programs. To alleviate this shortcoming, several ramifications

are needed. First, the FSMD model is extended to the FSMDA model which allows ar-

rays in its datapath. Secondly, the normalization technique of [141] is augmented with

additional grammar rules to represent array references as McCarthy’s functions [120].

Thirdly, the symbolic value propagation based equivalence checker is fitted with the

FSMDA model while accommodating special propagation rules for index variables.

The correctness and the complexity of the verification procedure are formally treated.

To validate that our FSMDA based equivalence checker is capable of verifying code

motion transformations of array-intensive programs, we performed a set of experi-

ments. The benchmark suite comprised behaviours which are computation intensive

and primarily involved arrays. These benchmarks were fed to the SPARK tool [64] to

obtain the transformed behaviours. New scalar variables, but no array variables, are

introduced during the transformations. Our proposed method could ascertain equiva-

142 Chapter 7 Conclusion and Scope for Future Work

lences in all the cases except one; for this case, it reported a possible non-equivalence

and outputted a set of paths (each paired with an almost similar path) for which equiv-

alence could not be found. A scrutiny of the involved benchmark revealed that the

non-equivalence resulted from a bug in the implementation of copy propagation for

array variables in the SPARK tool.

Translation validation of loop and arithmetic transformations in the presence of
recurrences: Loop and arithmetic transformations are applied extensively in embed-

ded system design to minimize execution time, power, area, etc. [30, 79, 131, 165]. An

equivalence checking method which models programs as ADDGs has been proposed

in [144, 146] for translation validation of programs undergoing loop transformations.

This method is extended later in [86, 88] to verify a plethora of arithmetic transfor-

mations as well. This method, however, cannot be applied to verify programs that

involve recurrences because recurrences lead to cycles in the ADDGs which render

currently available dependence analyses and arithmetic simplification rules inadmis-

sible. Another verification technique [154] which can verify programs with recur-

rences does not handle arithmetic transformations. Therefore, we aimed at developing

a unified equivalence checking framework to cover the entire spectrum of loop and

arithmetic transformations in addition to recurrences by further extending the ADDG

based equivalence checking strategy. Our method initially segregates the subgraphs

representing recurrences in an ADDG from the cycle-free subgraphs and basically

tries to find pairs of such recurrence subgraphs, one from the original ADDG and the

other from the transformed ADDG, which have undergone equivalent functional trans-

formation; on finding a match, it substitutes the recurrence subgraphs in either ADDG

with an identical uninterpreted function; once all recurrence subgraphs in an ADDG

have been successfully paired up with recurrence subgraphs from the other ADDG and

subsequently substituted by uninterpreted functions, the equivalence checker of [88] is

applied on the modified ADDGs (which no longer contain cycles) to test their equiva-

lence. The correctness of the proposed method is formally proved and the complexity

is analyzed. The experimental results attest the effectiveness of the method; while

the method of [154] is able to establish equivalence in cases where the transformed

behaviour is obtained from the original by application of loop transformations and

recurrences (but no arithmetic transformation), the method of [88] can prove equiv-

alence in cases of loop and arithmetic transformations (but no recurrence); only our

method can establish equivalence is presence of loop and arithmetic transformations

7.2 Scope for future work 143

along with recurrences.

It is to be noted that our tools along with the benchmarks and usage guidelines

are available for download at http://cse.iitkgp.ac.in/~chitta/pubs/ and are annotated as

“Assorted formal equivalence checking programs.”

7.2 Scope for future work

During the course of the thesis work, we had several interesting realizations regarding

how to overcome the current limitations and how to apply the developed procedures

in other related fields. In the following, we discuss both aspects of future works.

7.2.1 Enhancement of the present work

Allowing arrays to appear in the subscript of other arrays: Our current symbolic

value propagation based equivalence checker for FSMDAs does not support programs

which have arrays containing other arrays in their subscripts. A possible remedy is to

allow such constructs and mark the index array variables, similar to the current index

variables which presently comprise scalar variables only. The rule of propagating

values of index scalar variables in spite of a match also has to be extended to the index

array variables. However, such a remedy will obviously entail more bookkeeping to

store all these index variables.

A[0] = in;

for (i = 1; i <= N; ++i) {

A[i] = f(g(A[i/2]));

}

out = g(A[N]);

(a) Original program.

A[0] = g(in);

for (i = 1; i <= N; ++i) {

A[i] = g(f(A[i/2]));

}

out = A[N];

(b) Transformed program.

Figure 7.1: A pair of equivalent programs with non-equivalent recurrence graphs.

Combining symbolic value propagation with ADDG based equivalence check-
ing method: Figure 7.1 shows a pair of equivalent programs with non-equivalent

http://cse.iitkgp.ac.in/~chitta/pubs/

144 Chapter 7 Conclusion and Scope for Future Work

recurrence subgraphs. Since the basis subgraphs and the induction subgraphs of the

programs are different, our ADDG based equivalence checker will declare them to

be possibly non-equivalent. However, an equivalence checking mechanism may be

devised that propagates the mismatched symbolic values in and g(in) from the basis

subgraphs to the induction subgraphs and even out of the recurrence subgraph, if re-

quired (as in the present scenario). Note that the method of [154] is able to establish

equivalence of the two programs given in Figure 7.1 by employing a similar technique.

Attending currently unaddressed programming constructs: Here we present some

of the ways in which our present equivalence checking frameworks can be extended

to encompass currently unaddressed programming constructs.

Unsupported datatypes: The normalization technique employed by our path based

equivalence checkers reduces many computationally equivalent expressions to a syn-

tactically identical form. In order to compare the path characteristics, their condi-

tions of execution and data transformations are represented in this normalized form.

However, the present normalization grammar has no rules to represent bit-vectors and

user-defined datatypes. An SMT solver can be used to overcome these drawbacks.

This problem has been explored by us in [23] where we experimented with three SMT

solvers – Yices2, CVC4 and Z3. A pertinent point to note is that whenever the nor-

malization technique was able to establish equivalence its execution time was found

to be less than those involving SMT solvers. This observation indicates that reducing

two expressions to identical structural form (using normalization) to determine their

equivalence is a less time-consuming process than applying algebraic simplification

rules (such as those employed by the SMT solvers reported in this work) for the same.

So, we think it is better to invoke an SMT solver only when the normalizer is found to

be inadequate in establishing equivalence between two expressions, i.e., use an SMT

solver to supplement the normalizer and not to replace it. A full fledged implementa-

tion of such an amalgamated equivalence checker still remains as a future work.

Pointers and dynamic memory allocation: We envision that posterior to alias analy-

sis if pointers are replaced by the actual storage variables that they point to, such as,

∗(p+ i) is converted to p[i] where p is the base address of an array and i represents an

index, then our equivalence checking procedures can be applied as usual. For dynamic

memory allocation, fragmentation and garbage collection presents further complica-

cies. The Memcheck tool in the Valgrind tool suite [8] addresses many of the invalid

memory access issues. Once the validity of the memory accesses are ascertained then

7.2 Scope for future work 145

our tools may be used.

Inter-procedural analysis: The equivalence checking procedures described in this the-

sis compare one function from the original program with one from the transformed

program. In the scenario where we want to check equivalence between an original

and a transformed program comprising multiple functions, we may do so by checking

equivalence between pairs of programs (one from the original program and the other

from the transformed program) in a bottom-up fashion, i.e., we start with the func-

tions which which have no dependency on any of the other functions before moving

on to those which have dependencies on the functions which are already proved to

be equivalent. Note that the functions can be paired easily based on their names be-

cause typically compilers do not rename functions. In case our equivalence checker is

employed to verify semi-automated or hand-optimized programs where some of the

functions may have been split or merged in the transformed version, one may inline

the functions within one main function and then apply our equivalence checker from

program verification. Of course, inlining may not be viable always, especially in the

presence of recursive functions, and in such a case our method may not be applicable.

Concurrency: In a scenario where thread-safety guarantees that the code is free of race

conditions, i.e., the final values stored can be accurately computed, our equivalence

checking technique may be applied to check equivalence between the original sequen-

tial code and the transformed parallel code where only one schedule of the threads

is considered. Otherwise, path based equivalence checking methods using Petri net

based models, which can effectively capture concurrency, may be used [18, 19].

7.2.2 Scope of application to other research areas

Evolving programs: Although the present thesis deals with validation of code op-

timizations that are commonly applied by compilers, the scope of checking equiva-

lence between programs may include other domains as well where the transformed

programs have been obtained by some other means. One such domain is evolving

programs; software is not written entirely from scratch, it rather evolves over time.

Often industrial software development projects release different versions of the same

software; validation of such evolving programs to ensure compatibility between these

versions remains a huge problem [133]. An interesting study would be to check the

applicability of the formal methods developed in this thesis to establish equivalence

146 Chapter 7 Conclusion and Scope for Future Work

of evolving programs.

C = 0;

A[3:0] = 0;

X[3:0] = 0;

M[3:0] = multiplicand[3:0];

Q[3:0] = multiplier[3:0];

count[2:0] = 100;

do

begin

if(Q[0] == 1)

{C, A[3:0]} = A[3:0] + M[3:0];

end

Q[3:0] = Q[3:0] >> 1;

{C, A[3:0], X[3:0]} =

{C, A[3:0], X[3:0]} >> 1;

count[2:0] = count[2:0] - 1;

end

while(count != 0);

prod[7:0] = {A[3:0], X[3:0]};

(a) Shift-add multiplication with

right shifting (C, A, Q).

A[3:0] = 0;

M[3:0] = multiplicand[3:0];

Q[3:0] = multiplier[3:0];

count[2:0] = 100;

do

begin

if(Q[0] == 1)

Q[3:0] = Q[3:0] >> 1;

{A[3:0], Q[3]} = A[3:0] + M[3:0];

else

Q[3:0] = Q[3:0] >> 1;

{A[3:0], Q[3]} = A[3:0] + 0;

end

count[2:0] = count[2:0] - 1;

end

while(count != 0);

prod[7:0] = {A[3:0], Q[3:0]};

(b) Shift-add multiplication with

right shifting only Q.

Figure 7.2: A pair of programs with shift-add multiplication.

Checking equivalence at bit-level: Our equivalence checkers verify equivalence of

arithmetic transformations by employing a normalization technique [141], that has

been extended by us later in [25], which tries to reduce two computationally equiva-

lent expressions to a syntactically identical form. This normalization technique, how-

ever, considers integers to be of arbitrary size, i.e., finite size integers are not handled;

moreover, it does not have provision for bitwise operators. Hence, our techniques can-

not be readily applied to verify programs involving bit-vectors, e.g., the two equivalent

versions of shift-add multiplication algorithm coded in Verilog given in Figure 7.2. It

is to be noted that some work has been done by our research group to solve this prob-

lem [137], which adopts our notions of path covers and symbolic value propagation;

however, many challenges still remain unexplored.

Automatic program evaluation: Manual assessment of student programs is often

slow and inconsistent. Usually, in the introductory programming courses offered in

7.2 Scope for future work 147

institutions with a large intake of students, a lot of assessment work has to be done

manually by the instructors. As an example, at IIT Kharagpur where introductory

programming course is offered to around 600 students in every semester, each student

has to submit around 10–12 assignments and each assessment has about 10 program-

ming exercises. Thus, the evaluation task becomes as enormous as checking around

1,20,000 programs in a year. Assessment speed can be improved along with consis-

tency by automating the process of evaluation. Hence, it is desirable to develop tools

for automated evaluation of programming assignments. A survey on automated as-

sessment of programs can be found in [11]. An automated program evaluation scheme

by leveraging the equivalence checking method of FSMDs is presented in [143], where

a student program is compared with the program supplied by the instructor, both mod-

eled as FSMDs. However, a lot more headway is still required for this problem to

reach a full-fledged deployment.

Appendix A

Construction of FSMDAs from
Behavioural Descriptions

This appendix gives a brief elucidation for obtaining FSMDAs from behavioural de-

scriptions (high-level languages), such as C, and how to represent them textually so

that they can be fed as inputs to our FSMDA equivalence checker. Note that the con-

tent of section A.1 of this manuscript is largely borrowed from [90].

A.1 How to represent behavioural descriptions as FS-

MDAs conceptually

Any (sequential) behaviour consists of a combination of the following three basic con-

structs: (i) sequences of statements without any bifurcation of control flow, i.e., Basic

Blocks (BBs), (ii) if-else constructs, i.e., Control Blocks (CBs), and (iii) loops. There-

fore, without any loss of generality, capturing these three constructs in an FSMDA

model enables us to effectively represent any sequential behaviour as an FSMDA.

A BB consisting of a sequence of n statements S1, . . . ,Sn, can be represented as a

sequence of n+1 states q0, . . . ,qn, say and n edges of the form q j−1
−/S j
−−−−−� q j,1 ≤

j ≤ n, in the corresponding FSMDA. The number of states in the FSMDA, however,

can be reduced in the following way (although it is not mandatory).

149

150 Chapter A Construction of FSMDAs from Behavioural Descriptions

S1: t1⇐ u×d;
S2: t2⇐ x+d;
S3: t3⇐ t1× t2;
S4: t4⇐ u− t3;
S5: t5⇐ t1× t4;

depth

1

2

3

4

S1 S2

S3

S4

S5

(b) Its dependence graph. (c) Corresponding FSMDA.(a) A sequence of statements.

q0

q1

q2

q3

q4

−/t3⇐ t1× t2

−/t1⇐ u×d,

−/t4⇐ u− t3

−/t5⇐ t1× t4

t2⇐ x+d

Figure A.1: Construction of FSMDA corresponding to a basic block.

a⇐ x+ y;
else

a⇐ x− y;

if (c)

¬c/a⇐ x− y

q0

q1

(b) Corresponding FSMDA.(a) An if-else block.

endif

c/a⇐ x+ y

Figure A.2: Construction of FSMDA corresponding to a control block.

For a BB, we first construct a dependence graph. The graph consists of a node cor-

responding to each statement of the BB. There is a directed edge in the dependence

graph from the statement S1 to the statement S2 iff there is one of read-after-write,

write-after-read, and write-after-write dependences between S1 and S2. Naturally, the

constructed graph is a directed acyclic graph. Let the height of the dependence graph

be h. We now construct an FSMDA of h+1 states q0, . . . ,qh, say and h edges of the

form q j � q j+1,0 ≤ j ≤ h−1. We place the operations at depth k,1 ≤ k ≤ h, of the

dependence graph in the transition qk−1 � qk of the FSMDA. The condition associ-

ated with each transition is true. For example, the dependence graph for the BB in

Figure A.1(a) is depicted in Figure A.1(b) and the corresponding FSMDA is given in

Figure A.1(c).

A CB is of the form: if(c) then BB1 else BB2 endif, where c is a condi-

tional statement and BB1 and BB2 are two basic blocks which execute when c is true

and f alse, respectively. In this case, we construct the FSMDAs corresponding to BB1

and BB2 first. The FSMDA of the CB is obtained from these two FSMDAs by: (i)

merging the start states of two FSMDAs into one start state and the end states of two

A.2 How to represent FSMDAs textually 151

FSMDAs into one end state, and (ii) the condition c is placed as the condition of the

first transition of the FSMDA corresponding to BB1 and the condition ¬c is placed

in the first transition of the FSMDA corresponding to BB2. A sample if-else block is

shown in Figure A.2(a) and its corresponding FSMDA is shown in Figure A.2(b).

while (c)
a[i]⇐ b[i];
i⇐ i+1;

endwhile

(a) A while block.

q0

q1 q2

(b) Corresponding FSMDA.

−/i⇐ i+1

c/a[i]⇐ b[i] ¬c/−

Figure A.3

For the loop constructs, let us consider only while loops without any loss of gen-

erality. A while loop is of the form while(c) BB1 endwhile. In this case, we first

construct the FSMDA M of BB1. The FSMDA corresponding to the while loop is ob-

tained by merging the start and the end state of M into one state, q0 say, and placing the

condition c in the transitions from q0. We also need to add a transition from q0 with

condition ¬c as the exit path from the loop in the FSMDA as shown in Figure A.3.

A.2 How to represent FSMDAs textually

Now that we have described how behavioural descriptions can be represented as FS-

MDAs, we explain how FSMDAs are represented textually so that they can be parsed

by our equivalence checker.

The first line of the text file describing the FSMDA must contain its name (a string)

within double quotes, for example, "My_FSMDA".

Each transition in the FSMDA is represented using the following rule:

source_state number_of_transtions

condition_1 | data_transformations_1 destination_state_1

[condition_2 | data_transformations_2 destination_state_2] ;

Thus, the FSMDA shown in Figure A.1(c) is represented as follows:

152 Chapter A Construction of FSMDAs from Behavioural Descriptions

q0 1 - | t1 = u * d, t2 = x + d q1 ;

q1 1 - | t3 = t1 * t2 q2 ;

q2 1 - | t4 = u - t3 q3 ;

q3 1 - | t5 = t1 * t4 q4 ;

Note that the operations that occur in the same transition are separated by commas.

Moreover, we also refrain from using special symbols, such as ‘⇐’ and ‘×’, which

generally appear in our published papers since they are not readily available in stan-

dard keyboards; instead we use symbols, such as ‘=’ and ‘*’ for representing assign-

ment and multiplication, respectively (we use ‘==’ for checking equality, similar to

C). Furthermore, we have also replaced ‘/’ by ‘|’ to separate the condition of ex-

ecution and data transformation of a transition since the symbol ‘/’ is also used to

represent the division operation and therefore, introduced reduce/reduce conflict [2]

during parsing.

The FSMDA shown in Figure A.2(b) is represented as given below:

q0 2 c | a = x + y q1

!c | a = x - y q1 ;

While the FSMDA shown in Figure A.3(b) is represented as follows:

q0 2 c | a[i] = b[i] q1

!c | - q2 ;

q1 1 - | i = i + 1 q0 ;

Thus, the symbol ‘!’ is used (instead of ¬) to denote negation of a condition; the

symbol ‘-’ represents true when it appears as the condition of execution of a transi-

tion whereas, the same symbol represents no operation when it appears as the data

transformation of a transition.

It is important to note that there can be any number of transitions occurring from

a state in an FSMDA, see Figure 1 of reference [95] for example, as long as the

condition of execution of each of the transitions is mutually exclusive from each of

the other transitions.

A.2 How to represent FSMDAs textually 153

The following operation depicts that the value read from port P is stored in the variable

v:

read(v, P)

Similarly, the following operation depicts that the expression e is written into port P:

write(P, e)

The users are requested not to confuse these read and write operations with those

of McCarthy’s read/write operations [120] that are associated with arrays; the inter-

nal representation of array expressions using McCarthy’s read/write operations by our

equivalence checker is handled in a different manner than the read and write oper-

ations involving ports. Lastly, a final state (having a single transition, with true as its

condition of execution and no operation as its data transformation, back to the reset

state), qL say, in an FSMDA is represented as follows:

qL 0 ;

Bibliography

[1] ACL2 Version 6.1. http://www.cs.utexas.edu/~moore/acl2/.

[2] Bison: Reduce/Reduce Conflicts. https://www.gnu.org/software/bison/manual/

html_node/Reduce_002fReduce.html.

[3] CVC4 - the smt solver. http://cvc4.cs.nyu.edu/web/.

[4] GCC, the GNU Compiler Collection. https://gcc.gnu.org/.

[5] The llvm compiler infrastructure. http://llvm.org/.

[6] PVS Specification and Verification System. http://pvs.csl.sri.com/.

[7] The Yices SMT Solver. http://yices.csl.sri.com/.

[8] Valgrind. http://valgrind.org/.

[9] Z3. http://z3.codeplex.com/.

[10] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Princiles,

Techniques, and Tools. Pearson Education, 2006.

[11] K. M. Ala-Mutka. A survey of automated assessment approaches for program-

ming assignments. Computer Science Education, 15(2):83–102, 2005.

[12] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures.

Morgan Kaufmann Publishers, 2001.

[13] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler transformations for

high-performance computing. ACM Comput. Surv., 26:345–420, 1994.

155

http://www.cs.utexas.edu/~moore/acl2/
https://www.gnu.org/software/bison/manual/html_node/Reduce_002fReduce.html
https://www.gnu.org/software/bison/manual/html_node/Reduce_002fReduce.html
http://cvc4.cs.nyu.edu/web/
https://gcc.gnu.org/
http://llvm.org/
http://pvs.csl.sri.com/
http://yices.csl.sri.com/
http://valgrind.org/
http://z3.codeplex.com/

156 BIBLIOGRAPHY

[14] C. Baier. Polynomial time algorithms for testing probabilistic bisimulation and

simulation. In Computer Aided Verification, pages 50–61, 1996.

[15] C. Baier, B. Engelen, and M. E. Majster-Cederbaum. Deciding bisimilarity

and similarity for probabilistic processes. J. Comput. Syst. Sci., 60(1):187–231,

2000.

[16] C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, 2008.

[17] S. Bandyopadhyay, K. Banerjee, D. Sarkar, and C. Mandal. Translation val-

idation for PRES+ models of parallel behaviours via an FSMD equivalence

checker. In Progress in VLSI Design and Test, pages 69–78, 2012.

[18] S. Bandyopadhyay, D. Sarkar, K. Banerjee, and C. Mandal. A path-based equiv-

alence checking method for petri net based models of programs. In Interna-

tional Conference on Software Engineering and Applications,, pages 319–329,

2015.

[19] S. Bandyopadhyay, D. Sarkar, and C. Mandal. An efficient equivalence check-

ing method for petri net based models of programs. In International Conference

on Software Engineering, pages 827–828, 2015.

[20] K. Banerjee. An equivalence checking mechanism for handling recurrences in

array-intensive programs. In Principles of Programming Languages: Student

Research Competition, pages 1–2, 2015.

[21] K. Banerjee, C. Karfa, D. Sarkar, and C. Mandal. A value propagation based

equivalence checking method for verification of code motion techniques. In

International Symposium on Electronic System Design, pages 67–71, 2012.

[22] K. Banerjee, C. Karfa, D. Sarkar, and C. Mandal. Verification of code motion

techniques using value propagation. IEEE Trans. on CAD of ICS, 33(8):1180–

1193, 2014.

[23] K. Banerjee, C. Mandal, and D. Sarkar. Extending the scope of translation

validation by augmenting path based equivalence checkers with smt solvers. In

VLSI Design and Test, 18th International Symposium on, pages 1–6, July 2014.

[24] K. Banerjee, C. Mandal, and D. Sarkar. Deriving bisimulation relations from

path extension based equivalence checkers. In WEPL, pages 1–2, 2015.

BIBLIOGRAPHY 157

[25] K. Banerjee, D. Sarkar, and C. Mandal. Extending the FSMD framework for

validating code motions of array-handling programs. IEEE Trans. on CAD of

ICS, 33(12):2015–2019, 2014.

[26] G. Barany and A. Krall. Optimal and heuristic global code motion for minimal

spilling. In Compiler Construction, pages 21–40, 2013.

[27] C. W. Barrett, Y. Fang, B. Goldberg, Y. Hu, A. Pnueli, and L. D. Zuck. Tvoc: A

translation validator for optimizing compilers. In Computer Aided Verification,

pages 291–295, 2005.

[28] D. Barthou, P. Feautrier, and X. Redon. On the equivalence of two systems of

affine recurrence equations (research note). In Euro-Par Conference on Parallel

Processing, pages 309–313, 2002.

[29] S. Blazy and X. Leroy. Mechanized semantics for the Clight subset of the C

language. J. Autom. Reasoning, 43(3):263–288, 2009.

[30] Y. Bouchebaba, B. Girodias, G. Nicolescu, E. M. Aboulhamid, B. Lavigueur,

and P. G. Paulin. MPSoC memory optimization using program transformation.

ACM Trans. Design Autom. Electr. Syst., 12(4):43:1–43:39, 2007.

[31] F. Brandner and Q. Colombet. Elimination of parallel copies using code mo-

tion on data dependence graphs. Computer Languages, Systems & Structures,

39(1):25–47, 2013.

[32] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto. Analysis and modeling

of energy reducing source code transformations. In Design, Automation and

Test in Europe, pages 306–311, 2004.

[33] R. Camposano. Path-based scheduling for synthesis. IEEE Trans. on CAD of

ICS, 10(1):85–93, 1991.

[34] F. Catthoor, E. D., and S. S. Greff. HICSS. Custom Memory Management

Methodology: Exploration of Memory Organisation for Embedded Multime-

dia System Design. Kluwer Academic Publishers, 1998.

[35] G. Chen, M. Kandemir, and F. Li. Energy-aware computation duplication for

improving reliability in embedded chip multiprocessors. In Asia and South

Pacific Design Automation Conference, pages 134–139, 2006.

158 BIBLIOGRAPHY

[36] T.-H. Chiang and L.-R. Dung. Verification method of dataflow algorithms in

high-level synthesis. J. Syst. Softw., 80(8):1256–1270, 2007.

[37] A. Chutinan and B. H. Krogh. Verification of infinite-state dynamic systems

using approximate quotient transition systems. IEEE Trans. Automat. Contr.,

46(9):1401–1410, 2001.

[38] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: a new sym-

bolic model checker. International Journal on Software Tools for Technology

Transfer, 2:410–425, 2000.

[39] J. Cong, P. Zhang, and Y. Zou. Combined loop transformation and hierarchy al-

location for data reuse optimization. In International Conference on Computer-

Aided Design, pages 185–192, 2011.

[40] J. Cong, P. Zhang, and Y. Zou. Optimizing memory hierarchy allocation with

loop transformations for high-level synthesis. In Design Automation Confer-

ence, pages 1233–1238, 2012.

[41] R. Cordone, F. Ferrandi, M. D. Santambrogio, G. Palermo, and D. Sciuto. Us-

ing speculative computation and parallelizing techniques to improve scheduling

of control based designs. In Asia and South Pacific Design Automation Confer-

ence, pages 898–904, 2006.

[42] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms, Second Edition. The MIT Press and McGraw-Hill Book Company,

2001.

[43] L. A. Cortés, P. Eles, and Z. Peng. Verification of embedded systems using a

petri net based representation. In Proceedings of the 13th International Sympo-

sium on System Synthesis, pages 149–156, 2000.

[44] A. Darte and G. Huard. Loop shifting for loop compaction. J. Parallel Pro-

gramming, 28(5):499–534, 2000.

[45] R. De Nicola, A. Fantechi, S. Gnesi, and G. Ristori. An action based frame-

work for verifying logical and behavioural properties of concurrent systems. In

Computer Aided Verification, pages 37–47, 1991.

BIBLIOGRAPHY 159

[46] P. C. Diniz and J. M. P. Cardoso. Code transformations for embedded recon-

figurable computing architectures. In Generative and Transformational Tech-

niques in Software Engineering III, pages 322–344, 2009.

[47] L. C. V. Dos Santos, M. J. M. Heijligers, C. A. J. Van Eijk, J. Van Eijnhoven,

and J. A. G. Jess. A code-motion pruning technique for global scheduling. ACM

Trans. Des. Autom. Electron. Syst., 5(1):1–38, 2000.

[48] L. C. V. Dos. Santos and J. Jress. A reordering technique for efficient code

motion. In Design Automation Conference, pages 296–299, 1999.

[49] A. Dovier, C. Piazza, and A. Policriti. An efficient algorithm for computing

bisimulation equivalence. Theor. Comput. Sci., 311(1-3):221–256, 2004.

[50] A. P. N. E. Özer and D. Gregg. Classification of compiler optimizations for

high performance, small area and low power in fpgas. Technical report, Trinity

College, Dublin, Ireland, Department of Computer Science, 2003.

[51] H. Eveking, H. Hinrichsen, and G. Ritter. Automatic verification of scheduling

results in high-level synthesis. In Design, Automation and Test in Europe, pages

260–265, 1999.

[52] H. Falk and P. Marwedel. Source code optimization techniques for data flow

dominated embedded software. Kluwer, 2004.

[53] J. Fernandez and L. Mounier. "on the fly" verification of behavioural equiva-

lences and preorders. In Computer Aided Verification, pages 181–191, 1991.

[54] J. Fisher. Trace scheduling: A technique for global microcode compaction.

IEEE Transactions on Computers, C-30(7):478–490, 1981.

[55] K. Fisler and M. Y. Vardi. Bisimulation minimization in an automata-theoretic

verification framework. In Formal Methods in Computer-Aided Design, pages

115–132, 1998.

[56] R. W. Floyd. Assigning meaning to programs. In Proceedings the 19th Sympo-

sium on Applied Mathematics, pages 19–32, 1967.

[57] A. Fraboulet, K. Kodary, and A. Mignotte. Loop fusion for memory space

optimization. In International Symposium on Systems Synthesis, pages 95–100,

2001.

160 BIBLIOGRAPHY

[58] D. D. Gajski, N. D. Dutt, A. C. Wu, and S. Y. Lin. High-Level Synthesis:

Introduction to Chip and System Design. Kluwer Academic, 1992.

[59] M. Ghodrat, T. Givargis, and A. Nicolau. Control flow optimization in loops

using interval analysis. In Proceedings of the 2008 international conference on

Compilers, architectures and synthesis for embedded systems, pages 157–166,

2008.

[60] M. Ghodrat, T. Givargis, and A. Nicolau. Optimizing control flow in loops

using interval and dependence analysis. Design Automation for Embedded Sys-

tems, 13:193–221, 2009.

[61] R. Gupta and M. Soffa. Region scheduling: an approach for detecting and redis-

tributing parallelism. IEEE Transactions on Software Engineering, 16(4):421–

431, 1990.

[62] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. Dynamic conditional branch bal-

ancing during the high-level synthesis of control-intensive designs. In Design,

Automation and Test in Europe, pages 270–275, 2003.

[63] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. Dynamically increasing the scope

of code motions during the high-level synthesis of digital circuits. IEE Pro-

ceedings: Computer and Digital Technique, 150(5):330–337, 2003.

[64] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. SPARK: A high-level synthesis

framework for applying parallelizing compiler transformations. In VLSI De-

sign, pages 461–466, 2003.

[65] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. Using global code motions to

improve the quality of results for high-level synthesis. IEEE Trans. on CAD of

ICS, 23(2):302–312, Feb 2004.

[66] S. Gupta, R. Gupta, N. Dutt, and A. Nicolau. Coordinated parallelizing com-

piler optimizations and high-level synthesis. ACM Trans on Design Automation

of Electronic Systems, 9(4):1–31, 2004.

[67] S. Gupta, R. K. Gupta, M. Miranda, and F. Catthoor. Analysis of high-level

address code transformations for programmable processors. In Design, Au-

tomation and Test in Europe, pages 9–13, 2000.

BIBLIOGRAPHY 161

[68] S. Gupta, M. Reshadi, N. Savoiu, N. Dutt, R. Gupta, and A. Nicolau. Dynamic

common sub-expression elimination during scheduling in high-level synthesis.

In Proceedings of the 15th International Symposium on System Synthesis, pages

261–266, 2002.

[69] S. Gupta, N. Savoiu, N. Dutt, R. Gupta, and A. Nicolau. Conditional spec-

ulation and its effects on performance and area for high-level synthesis. In

International Symposium on System Synthesis, pages 171–176, 2001.

[70] S. Gupta, N. Savoiu, S. Kim, N. Dutt, R. Gupta, and A. Nicolau. Specula-

tion techniques for high level synthesis of control intensive designs. In Design

Automation Conference, pages 269–272, 2001.

[71] R. A. Hernandez, M. Strum, and W. J. Chau. Transformations on the FSMD of

the RTL code with combinational logic statements for equivalence checking of

HLS. In Latin-American Test Symposium, pages 1–6, 2015.

[72] Y. Hu, C. W. Barrett, B. Goldberg, and A. Pnueli. Validating more loop opti-

mizations. Electr. Notes Theor. Comput. Sci., 141(2):69–84, 2005.

[73] C. Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage of bisimulations

and kripke logical relations. In Principles of Programming Languages, pages

59–72, 2012.

[74] W. M. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A.

Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm,

and D. M. Lavery. The superblock: An effective technique for vliw and super-

scalar compilation. The Journal of Supercomputing, 7:229–248, 1993.

[75] G. Iooss, C. Alias, and S. V. Rajopadhye. On program equivalence with reduc-

tions. In Static Analysis, pages 168–183, 2014.

[76] R. Jain, A. Majumdar, A. Sharma, and H. Wang. Empirical evaluation of some

high-level synthesis scheduling heuristics. In Design Automation Conference,

pages 686–689, 1991.

[77] N. E. Johnson. Code Size Optimization for Embedded Processors. PhD thesis,

University of Cambridge, 2004.

[78] I. Kadayif and M. T. Kandemir. Data space-oriented tiling for enhancing local-

ity. ACM Trans. Embedded Comput. Syst., 4(2):388–414, 2005.

162 BIBLIOGRAPHY

[79] I. Kadayif, M. T. Kandemir, G. Chen, O. Ozturk, M. Karaköy, and U. Sezer. Op-

timizing array-intensive applications for on-chip multiprocessors. IEEE Trans.

Parallel Distrib. Syst., 16(5):396–411, 2005.

[80] A. Kanade, A. Sanyal, and U. P. Khedker. Validation of GCC optimizers

through trace generation. Softw., Pract. Exper., 39(6):611–639, 2009.

[81] M. Kandemir, S. W. Son, and G. Chen. An evaluation of code and data opti-

mizations in the context of disk power reduction. In Proceedings of the 2005

International Symposium on Low Power Electronics and Design, pages 209–

214, 2005.

[82] M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and W. Ye. Influence of compiler

optimizations on system power. IEEE Trans. Very Large Scale Integr. Syst.,

9:801–804, December 2001.

[83] M. T. Kandemir. Reducing energy consumption of multiprocessor soc architec-

tures by exploiting memory bank locality. ACM Trans. Des. Autom. Electron.

Syst., 11(2):410–441, 2006.

[84] D. M. Kaplan. Some completeness results in the mathematical theory of com-

putation. J. ACM, 15(1):124–134, 1968.

[85] M. Karakoy. Optimizing array-intensive applications for on-chip multiproces-

sors. IEEE Trans. Parallel Distrib. Syst., 16(5):396–411, 2005.

[86] C. Karfa, K. Banerjee, D. Sarkar, and C. Mandal. Equivalence checking of

array-intensive programs. In IEEE Computer Society Annual Symposium on

VLSI, pages 156–161, 2011.

[87] C. Karfa, K. Banerjee, D. Sarkar, and C. Mandal. Experimentation with SMT

solvers and theorem provers for verification of loop and arithmetic transfor-

mations. In IBM Collaborative Academia Research Exchange, pages 3:1–3:4,

2013.

[88] C. Karfa, K. Banerjee, D. Sarkar, and C. Mandal. Verification of loop and

arithmetic transformations of array-intensive behaviours. IEEE Trans. on CAD

of ICS, 32(11):1787–1800, 2013.

BIBLIOGRAPHY 163

[89] C. Karfa, C. Mandal, and D. Sarkar. Verification of register transfer level low

power transformations. In IEEE Computer Society Annual Symposium on VLSI,

pages 313–314, 2011.

[90] C. Karfa, C. Mandal, and D. Sarkar. Formal verification of code motion tech-

niques using data-flow-driven equivalence checking. ACM Trans. Design Au-

tom. Electr. Syst., 17(3):30:1–30:37, 2012.

[91] C. Karfa, C. Mandal, D. Sarkar, S. R. Pentakota, and C. Reade. A formal veri-

fication method of scheduling in high-level synthesis. In International Sympo-

sium on Quality Electronic Design, pages 71–78, 2006.

[92] C. Karfa, C. A. Mandal, D. Sarkar, S. R. Pentakota, and C. Reade. Verifica-

tion of scheduling in high-level synthesis. In IEEE Computer Society Annual

Symposium on VLSI, pages 141–146, 2006.

[93] C. Karfa, C. A. Mandal, D. Sarkar, and C. Reade. Register sharing verification

during data-path synthesis. In International Conference on Computing: Theory

and Applications, pages 135–140, 2007.

[94] C. Karfa, D. Sarkar, and C. Mandal. Verification of datapath and controller

generation phase in high-level synthesis of digital circuits. IEEE Trans. on

CAD of ICS, 29(3):479–492, 2010.

[95] C. Karfa, D. Sarkar, C. Mandal, and P. Kumar. An equivalence-checking

method for scheduling verification in high-level synthesis. IEEE Trans. on CAD

of ICS, 27:556–569, 2008.

[96] C. Karfa, D. Sarkar, and C. A. Mandal. Verification of KPN level transforma-

tions. In VLSI Design, pages 338–343, 2013.

[97] C. Karfa, D. Sarkar, C. A. Mandal, and C. Reade. Hand-in-hand verification of

high-level synthesis. In ACM Great Lakes Symposium on VLSI, pages 429–434,

2007.

[98] Y. Kim, S. Kopuri, and N. Mansouri. Automated formal verification of schedul-

ing process using finite state machines with datapath (FSMD). In International

Symposium on Quality Electronic Design, pages 110–115, 2004.

164 BIBLIOGRAPHY

[99] Y. Kim, S. Kopuri, and N. Mansouri. Automated formal verification of schedul-

ing process using finite state machines with datapath (FSMD). In Proceedings

of the 5th International Symposium on Quality Electronic Design, pages 110–

115, 2004.

[100] Y. Kim and N. Mansouri. Automated formal verification of scheduling with

speculative code motions. In ACM Great Lakes Symposium on VLSI, pages

95–100, 2008.

[101] J. Knoop, O. Ruthing, and B. Steffen. Lazy code motion. In Programming

Language Design and Implementation, pages 224–234, 1992.

[102] V. Koutavas and M. Wand. Small bisimulations for reasoning about higher-

order imperative programs. In Principles of Programming Languages, pages

141–152, 2006.

[103] S. Kundu, S. Lerner, and R. Gupta. Validating high-level synthesis. In Com-

puter Aided Verification, pages 459–472, 2008.

[104] S. Kundu, S. Lerner, and R. Gupta. Translation validation of high-level synthe-

sis. IEEE Trans. on CAD of ICS, 29(4):566–579, 2010.

[105] S. Kundu, Z. Tatlock, and S. Lerner. Proving optimizations correct using pa-

rameterized program equivalence. In Programming Language Design and Im-

plementation, pages 327–337, 2009.

[106] G. Lakshminarayana, K. Khouri, and N. Jha. Wavesched: A novel scheduling

technique for control-flow intensive behavioural descriptions. In International

Conference on Computer-Aided Design, pages 244–250, 1997.

[107] G. Lakshminarayana, A. Raghunathan, and N. Jha. Incorporating speculative

execution into scheduling of control-flow-intensive design. IEEE Trans. on

CAD of ICS, 19(3):308–324, March 2000.

[108] M. S. Lam and R. P. Wilson. Limits of control flow on parallelism. In Interna-

tional Symposium on Computer architecture, pages 46–57, 1992.

[109] B. Landwehr and P. Marwedel. A new optimization technique for improving re-

source exploitation and critical path minimization. In International Symposium

on Systems Synthesis, pages 65–72, 1997.

BIBLIOGRAPHY 165

[110] C.-H. Lee, C.-H. Shih, J.-D. Huang, and J.-Y. Jou. Equivalence checking of

scheduling with speculative code transformations in high-level synthesis. In

Asia and South Pacific Design Automation Conference, pages 497–502, 2011.

[111] J.-H. Lee, Y.-C. Hsu, and Y.-L. Lin. A new integer linear programming for-

mulation for the scheduling problem in data path synthesis. In Procs. of the

International Conference on Computer-Aided Design, pages 20–23, 1989.

[112] X. Leroy, et al. The CompCert C compiler. http://compcert.inria.fr/compcert-C.

html.

[113] F. Li and M. T. Kandemir. Locality-conscious workload assignment for array-

based computations in MPSOC architectures. In Design Automation Confer-

ence, pages 95–100, 2005.

[114] Q. Li, L. Shi, J. Li, C. J. Xue, and Y. He. Code motion for migration mini-

mization in STT-RAM based hybrid cache. In IEEE Computer Society Annual

Symposium on VLSI, pages 410–415, 2012.

[115] T. Li, Y. Guo, W. Liu, and M. Tang. Translation validation of scheduling in

high level synthesis. In ACM Great Lakes Symposium on VLSI, pages 101–106,

2013.

[116] D. Liu, S. Yin, L. Liu, and S. Wei. Polyhedral model based mapping opti-

mization of loop nests for cgras. In Design Automation Conference, pages

19:1–19:8, 2013.

[117] C. A. Mandal and R. M. Zimmer. A genetic algorithm for the synthesis of

structured data paths. In VLSI Design, pages 206–211, 2000.

[118] Z. Manna. Mathematical Theory of Computation. McGraw-Hill Kogakusha,

1974.

[119] T. Matsumoto, K. Seto, and M. Fujita. Formal equivalence checking for loop

optimization in C programs without unrolling. In Advances in Computer Sci-

ence and Technology, pages 43–48, 2007.

[120] J. McCarthy. Towards a mathematical science of computation. In International

Federation for Information Processing (IFIP) Congress, pages 21–28, 1962.

http://compcert.inria.fr/compcert-C.html
http://compcert.inria.fr/compcert-C.html

166 BIBLIOGRAPHY

[121] V. Menon, K. Pingali, and N. Mateev. Fractal symbolic analysis. ACM Trans.

Program. Lang. Syst., 25(6):776–813, 2003.

[122] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes

in Computer Science. Springer, 1980.

[123] S.-M. Moon and K. Ebcioğlu. An efficient resource-constrained global schedul-

ing technique for superscalar and VLIW processors. In Proceedings of the 25th

annual international symposium on Microarchitecture, pages 55–71, 1992.

[124] S. S. Muchnick. Advanced compiler design and implementation. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA, 1997.

[125] K. S. Namjoshi, G. Tagliabue, and L. D. Zuck. A witnessing compiler: A proof

of concept. In Runtime Verification, pages 340–345, 2013.

[126] G. C. Necula. Translation validation for an optimizing compiler. In Program-

ming Language Design and Implementation, pages 83–94, 2000.

[127] A. Nicolau and S. Novack. Trailblazing: A hierarchical approach to percolation

scheduling. In International Conference on Parallel Processing, volume 2,

pages 120–124, Aug. 1993.

[128] M. Palkovic, F. Catthoor, and H. Corporaal. Trade-offs in loop transformations.

ACM Trans. Design Autom. Electr. Syst., 14(2):22:1–22:30, 2009.

[129] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer, C. Kulka-

rni, A. Vandercappelle, and P. G. Kjeldsberg. Data and memory optimization

techniques for embedded systems. ACM Trans. Des. Autom. Electron. Syst.,

6:149–206, April 2001.

[130] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In Tools and

Algorithms for the Construction and Analysis of Systems, pages 151–166, 1998.

[131] M. Potkonjak, S. Dey, Z. Iqbal, and A. C. Parker. High performance embedded

system optimization using algebraic and generalized retiming techniques. In

International Conference on Computer Design, pages 498–504, 1993.

[132] S. Prema, R. Jehadeesan, B. Panigrahi, and S. Satya Murty. Dependency anal-

ysis and loop transformation characteristics of auto-parallelizers. In Parallel

Computing Technologies, pages 1–6, 2015.

BIBLIOGRAPHY 167

[133] D. Qi, A. Roychoudhury, Z. Liang, and K. Vaswani. DARWIN: an approach to

debugging evolving programs. ACM Trans. Softw. Eng. Methodol., 21(3):19:1–

19:29, 2012.

[134] M. Qiu, E. H.-M. Sha, M. Liu, M. Lin, S. Hua, and L. T. Yang. Energy mini-

mization with loop fusion and multi-functional-unit scheduling for multidimen-

sional DSP. J. Parallel Distrib. Comput., 68(4):443–455, 2008.

[135] M. Rahmouni and A. A. Jerraya. Formulation and evaluation of scheduling

techniques for control flow graphs. In European Design Automation Confer-

ence, pages 386–391, 1995.

[136] M. Rim, Y. Fann, and R. Jain. Global scheduling with code-motions for high-

level synthesis applications. IEEE Trans. VLSI Syst., 3(3):379–392, 1995.

[137] G. Roy. Techniques and Algorithms for the Design and Development of a Vir-

tual Laboratory to Support Logic Design and Computer Organization. Master’s

thesis, IIT Kharagpur, India, 2014.

[138] O. Ruthing, J. Knoop, and B. Steffen. Sparse code motion. In Principles of

Programming Languages, pages 170–183, 2000.

[139] H. Samsom, F. Franssen, F. Catthoor, and H. De Man. System level verification

of video and image processing specifications. In International Symposium on

Systems Synthesis, pages 144–149, 1995.

[140] D. Sangiorgi. On the origins of bisimulation and coinduction. ACM Trans.

Program. Lang. Syst., 31(4):15:1–15:41, 2009.

[141] D. Sarkar and S. De Sarkar. A theorem prover for verifying iterative programs

over integers. IEEE Trans. Software. Engg., 15(12):1550–1566, 1989.

[142] P. Sarkar and S. Maitra. Construction of nonlinear Boolean functions with

important cryptographic properties. In International Conference on the The-

ory and Applications of Cryptographic Techniques (EUROCRYPT), pages 485–

506, 2000.

[143] K. K. Sharma, K. Banerjee, and C. Mandal. A scheme for automated evaluation

of programming assignments using FSMD based equivalence checking. In IBM

Collaborative Academia Research Exchange, pages 10:1–10:4, 2014.

168 BIBLIOGRAPHY

[144] K. C. Shashidhar. Efficient Automatic Verification of Loop and Data-flow Trans-

formations by Functional Equivalence Checking. PhD thesis, Katholieke Uni-

versiteit Leuven, 2008.

[145] K. C. Shashidhar, M. Bruynooghe, F. Catthoor, and G. Janssens. Geometric

model checking: An automatic verification technique for loop and data reuse

transformations. Electronic Notes in Theoretical Computer Science, 65(2):71–

86, 2002.

[146] K. C. Shashidhar, M. Bruynooghe, F. Catthoor, and G. Janssens. Functional

equivalence checking for verification of algebraic transformations on array-

intensive source code. In Design, Automation and Test in Europe, pages 1310–

1315, 2005.

[147] K. C. Shashidhar, M. Bruynooghe, F. Catthoor, and G. Janssens. Verification

of source code transformations by program equivalence checking. In Compiler

Construction, pages 221–236, 2005.

[148] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,

1(2):146–160, 1972.

[149] S. Tripakis and S. Yovine. Analysis of timed systems using time-abstracting

bisimulations. Formal Methods in System Design, 18(1):25–68, 2001.

[150] J.-B. Tristan and X. Leroy. Verified validation of lazy code motion. In Pro-

gramming Language Design and Implementation, pages 316–326, 2009.

[151] P. Vanbroekhoven, G. Janssens, M. Bruynooghe, and F. Catthoor. Transforma-

tion to dynamic single assignment using a simple data flow analysis. In Asian

symposium on Programming Languages and Systems, pages 330–346, 2005.

[152] S. Verdoolaege. ISL: An Integer Set Library for the Polyhedral Model. In

International Congress on Mathematical Software, pages 299–302, 2010.

[153] S. Verdoolaege, G. Janssens, and M. Bruynooghe. Equivalence checking of

static affine programs using widening to handle recurrences. In Computer Aided

Verification, pages 599–613, 2009.

[154] S. Verdoolaege, G. Janssens, and M. Bruynooghe. Equivalence checking of

static affine programs using widening to handle recurrences. ACM Trans. Pro-

gram. Lang. Syst., 34(3):11:1–11:35, 2012.

BIBLIOGRAPHY 169

[155] T. Šimunić, L. Benini, G. De Micheli, and M. Hans. Source code optimization

and profiling of energy consumption in embedded systems. In International

Symposium on Systems Synthesis, pages 193–198, 2000.

[156] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. B. Whalley,

G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. P.

Puschner, J. Staschulat, and P. Stenström. The worst-case execution-time prob-

lem - overview of methods and survey of tools. ACM Trans. Embedded Comput.

Syst., 7(3):36:1–36:53.

[157] R. Wimmer, M. Herbstritt, H. Hermanns, K. Strampp, and B. Becker. Sigref- A

symbolic bisimulation tool box. In Automated Technology for Verification and

Analysis, pages 477–492, 2006.

[158] L. Xue, O. Ozturk, and M. Kandemir. A memory-conscious code parallelization

scheme. In Design Automation Conference, pages 230–233, 2007.

[159] Y.-P. You and S.-H. Wang. Energy-aware code motion for gpu shader proces-

sors. ACM Trans. Embed. Comput. Syst., 13(3):49:1–49:24, 2013.

[160] H. Yviquel, A. Sanchez, P. Jääskeläinen, J. Takala, M. Raulet, and E. Casseau.

Embedded multi-core systems dedicated to dynamic dataflow programs. Signal

Processing Systems, 80(1):121–136, 2015.

[161] S. Zamanzadeh, M. Najibi, and H. Pedram. Pre-synthesis optimization for asyn-

chronous circuits using compiler techniques. In Advances in Computer Science

and Engineering, volume 6 of Communications in Computer and Information

Science, pages 951–954. Springer Berlin Heidelberg, 2009.

[162] C. Zhang and F. Kurdahi. Reducing off-chip memory access via stream-

conscious tiling on multimedia applications. Int. J. Parallel Program.,

35(1):63–98, 2007.

[163] J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Formal verifica-

tion of SSA-based optimizations for LLVM. In Programming Language Design

and Implementation, pages 175–186, 2013.

[164] Y. Zhu, G. Magklis, M. L. Scott, C. Ding, and D. H. Albonesi. The energy

impact of aggressive loop fusion. In Proceedings of the 13th International

170 BIBLIOGRAPHY

Conference on Parallel Architectures and Compilation Techniques, pages 153–

164, 2004.

[165] J. Zory and F. Coelho. Using algebraic transformations to optimize expression

evaluation in scientific codes. In International Conference on Parallel Archi-

tectures and Compilation Techniques, pages 376–384, 1998.

[166] L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. Voc: A translation validator for

optimizing compilers. Journal of Universal Computer Science, 9(3):223–247,

2003.

[167] L. D. Zuck, A. Pnueli, B. Goldberg, C. W. Barrett, Y. Fang, and Y. Hu. Transla-

tion and run-time validation of loop transformations. Formal Methods in System

Design, 27(3):335–360, 2005.

Publications:

Journal/conference papers:

1. Kunal Banerjee, Dipankar Sarkar, Chittaranjan Mandal; “Deriving Bisimula-
tion Relations from Path Extension Based Equivalence Checkers;” IEEE Trans-
formations on Software Engineering (TSE), vol. 43, no. 10, 2017, pages: 946–
953.

2. Kunal Banerjee, Dipankar Sarkar, Chittaranjan Mandal; “Deriving Bisimu-
lation Relations from Value Propagation Based Equivalence Checkers of Pro-
grams;” Formal Aspects of Computing (FAOC), vol. 29, no. 2, 2017, pages:
365–379.

3. Kunal Banerjee, Dipankar Sarkar, Chittaranjan Mandal; “Extending the FSMD
Framework for Validating Code Motions of Array-Handling Programs;” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), vol. 33, no. 12, 2014, pages: 2015–2019.

4. Kunal Banerjee, Chandan Karfa, Dipankar Sarkar, Chittaranjan Mandal; “Ver-
ification of Code Motion Techniques using Value Propagation;” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 33, no. 8, 2014, pages: 1180–1193.

5. Kunal Banerjee, Chittaranjan Mandal, Dipankar Sarkar; “An Equivalence Check-
ing Framework for Array-Intensive Programs;” Automated Technology for Ver-
ification and Analysis (ATVA), Pune, India, 2017, pages: 84–90.

6. Kunal Banerjee, Chittaranjan Mandal, Dipankar Sarkar; “Translation Valida-
tion of Loop and Arithmetic Transformations in the Presence of Recurrences;”
ACM SIGPLAN/SIGBED Conference on Languages, Compilers, Tools and The-
ory for Embedded Systems (LCTES), Santa Barbara, United States, 2016, pages:
31–40.

7. Kunal Banerjee, Chittaranjan Mandal, Dipankar Sarkar; “A Translation Vali-
dation Framework for Symbolic Value Propagation Based Equivalence Check-

171

172 BIBLIOGRAPHY

ing of FSMDAs;” Source Code Analysis and Manipulation (SCAM), Bremen,
Germany, 2015, pages: 247–252.

8. Kunal Banerjee, Chittaranjan Mandal, Dipankar Sarkar; “Translation Vali-
dation of Transformations of Embedded System Specifications using Equiva-
lence Checking;” IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
Montpellier, France, 2015, pages: 183–186, (received Best PhD Forum Paper
Award).

9. Kunal Banerjee, Chandan Karfa, Dipankar Sarkar, Chittaranjan Mandal; “A
Value Propagation Based Equivalence Checking Method for Verification of Code
Motion Techniques;” International Symposium on Electronic System Design
(ISED), Kolkata, India, 2012, pages: 67–71.

Publications in research fora:

Note that the following dissemination arising out of this work were not published
as part of the conference/workshop proceedings; these venues rather aimed to provide
a platform for young researchers to discuss their works with experts in their respective
fields; all of these work, however, went through standard peer review process before
being accepted.

10. Kunal Banerjee; “Translation Validation of Transformations of Embedded Sys-
tem Specifications using Equivalence Checking;” Inter-Research-Institute Stu-
dent Seminar in Computer Science (IRISS), Goa, India, 2015.

11. Kunal Banerjee; “An Equivalence Checking Mechanism for Handling Recur-
rences in Array-Intensive Programs;” ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL): Student Research Competition,
Mumbai, India, 2015.

12. Kunal Banerjee, Chittaranjan Mandal, Dipankar Sarkar; “Deriving Bisimula-
tion Relations from Path Extension Based Equivalence Checkers;” IMPECS-
POPL Workshop on Emerging Research and Development Trends in Program-
ming Languages (WEPL), Mumbai, India, 2015.

	Front cover
	Title Page
	Approval Page
	Certificate Page
	Declaration Page
	Acknowledgments
	Abstract
	Table of Contents
	List of Symbols
	List of Figures
	List of Tables
	Introduction
	Literature survey and motivations
	Code motion transformations
	Alternative approaches to verification of code motion transformations: bisimulation vs path based
	Loop transformations and arithmetic transformations
	Objectives of the work

	Contributions of the thesis
	Translation validation of code motion transformations
	Deriving bisimulation relations from path based equivalence checkers
	Translation validation of code motion transformations in array-intensive programs
	Translation validation of loop and arithmetic transformations in the presence of recurrences

	Organization of the thesis

	Literature Survey
	Introduction
	Code motion transformations
	Applications of code motion transformations
	Verification of code motion transformations

	Bisimulation vs path based
	Bisimulation based verification
	Path based equivalence checking

	Loop transformations and arithmetic transformations
	Applications of loop transformations
	Applications of arithmetic transformations
	Verification of loop and arithmetic transformations

	Conclusion

	Translation Validation of Code Motion Transformations
	Introduction
	The FSMD model and related concepts
	The method of symbolic value propagation
	Basic concepts
	Need for detecting loop invariance of subexpressions
	Subsumption of conditions of execution of the paths being compared

	Correctness of symbolic value propagation as a method of equivalence checking
	The overall verification method
	An illustrative example
	An example of dynamic loop scheduling

	Correctness and complexity of the equivalence checking procedure
	Correctness
	Complexity

	Experimental Results
	Conclusion

	Deriving Bisimulation Relations
	Introduction
	The FSMD Model
	From path extension based equivalence checker
	From symbolic value propagation based equivalence checker
	Conclusion

	Code Motion Transformations in Array-Intensive Programs
	Introduction
	The FSMDA model
	Characteristic tuple of a path
	Normalization of expressions involving arrays
	Equivalence checking of FSMDAs
	Correctness and complexity
	Correctness
	Complexity

	Experimental Results
	Current limitations

	Conclusion

	Loop and Arithmetic Transformations in the Presence of Recurrences
	Introduction
	The class of supported input programs
	The ADDG model and the associated equivalence checking scheme
	The ADDG model
	Equivalence checking of ADDGs
	An overview of the method

	Extension of the equivalence checking scheme to handle recurrences
	Correctness and complexity
	Correctness
	Complexity

	Experimental results
	Conclusion

	Conclusion and Scope for Future Work
	Summary of contributions
	Scope for future work
	Enhancement of the present work
	Scope of application to other research areas

	Construction of FSMDAs from Behavioural Descriptions
	How to represent behavioural descriptions as FSMDAs conceptually
	How to represent FSMDAs textually

	Bibliography

