An Equivalence Checking Mechanism for Handling
Recurrences in Array-Intensive Programs

Kunal Banerjee *

Dept. of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

kunalb@cse.iitkgp.ernet.in

1. Problem statement

Compiler optimization of array-intensive programs involves exten-
sive application of loop transformations and arithmetic transforma-
tions. Hence, translation validation of array-intensive programs re-
quires manipulation of sets and relations of integer points (repre-
senting array indices) bounded by constraints to account for loop
transformations and simplification of arithmetic expressions to han-
dle arithmetic transformations. A major obstacle for verification of
such programs is posed by the presence of recurrences, where an
element of an array gets defined in terms of some other previously
defined element(s) of the same array. Recurrences lead to cycles
in the data-dependence graph of the program which make depen-
dence analyses and simplifications (through closed-form represen-
tations) of the data transformations difficult. In this work, array
data-dependence graphs (ADDGs) are used to represent both the
original and the optimized version of the program and a validation
scheme is proposed where the cycles in the ADDGs are isolated
from the acyclic portions and treated separately. Thus, this work
provides a unified equivalence checking framework to handle loop
and arithmetic transformations along with recurrences — this com-
bination of features had not been achieved by a single verification
technique earlier.

2. Literature survey

Loop transformations together with arithmetic transformations are
applied extensively in the domain of multimedia and signal pro-
cessing applications to obtain better performance in terms of en-
ergy, area and/or execution time. The work reported in [1]], for
example, applies loop fusion and loop tiling to several nested
loops and parallelizes the resulting code across different proces-
sors for multimedia applications. Minimization of the total energy
while satisfying the performance requirements for applications
with multi-dimensional nested loops was targeted in [2]. Arith-
metic code transformations have been successfully employed in
minimizing critical path lengths [6]. Importantly, loop transforma-
tion and arithmetic transformation techniques are applied dynam-
ically since application of one may create scope of application of
several other techniques. In all these cases, it is crucial to ensure
that the intended behaviour of the program has not been altered
wrongly during transformation.

An approach for verifying array-intensive programs can be to
use off-the-shelf SMT solvers or theorem provers since the equiv-
alence between two programs can be modeled with a formula such
that the validity of the formula implies the equivalence [4]. Al-
though SMT solvers and theorem provers can efficiently handle lin-
ear arithmetic, they are not equally suitable for handling non-linear
arithmetic which is often encountered in array-intensive programs;

* The work presented here was supported by TCS Research Fellowship. The
author acknowledges C Mandal and D Sarkar, Dept of CSE, IIT Kharagpur,
for their technical participation in this work.

hence, these tools are found to be inadequate for establishing equiv-
alence of such programs [4]]. The works reported in [8} 9] consider
arestricted class of programs which must have static control-flows,
uniform recurrences, valid schedules, affine indices and bounds and
single assignment forms. In [8,19]], the original and the transformed
behaviours are modeled as ADDGs and the correctness of the loop
transformations is established by showing the equivalence between
the two ADDGs. These works are capable of handling a wide va-
riety of loop transformation techniques without taking any infor-
mation from the synthesis tools. The method proposed in [10} [11]]
extends the ADDG model to a dependence graph model to han-
dle recurrences, both uniform and non-uniform, along with asso-
ciative and commutative operations. All the above methods, how-
ever, fail if the transformed behaviour is obtained from the orig-
inal behaviour by application of arithmetic transformations such
as, distributive transformations, arithmetic expression simplifica-
tion, common sub-expression elimination, constant unfolding, etc.,
along with loop transformations. The work reported in [3} 5] fur-
nishes an ADDG based method which compares ADDGs at slice-
level rather than path-level as performed in [8]] and employs a nor-
malization technique [7] for the arithmetic expressions to verify
a wide variety of loop transformations and a wide range of arith-
metic transformations applied together in array-intensive programs.
However, it cannot verify programs involving recurrences because
recurrences lead to cycles in the ADDGs which are, otherwise, di-
rected acyclic graphs. The presence of cycles makes the existing
data-dependence analysis and simplification (through closed-form
representations) of the data transformations in ADDGs inapplica-
ble.

3. Extension of the equivalence checking scheme
to handle recurrences

This work provides a unified equivalence checking framework
based on ADDGs to handle loop and arithmetic transformations
along with recurrences. The validation scheme proposed here iso-
lates the cycles in the ADDGs from the acyclic portions and treats
them separately; a cycle (arising from a recurrence) in the original
ADDG is compared with its corresponding cycle in the transformed
ADDG in isolation while the acyclic portions are compared using
the conventional technique of [5]. This technique, however, has the
following restrictions: (i) since an array element in a recurrence
gets defined in terms of element(s) of the same array, the loop it-
erators of both the ADDGs must proceed in an identical fashion,
i.e., both should increment or decrement identically, and (ii) a re-
currence in the original program can be divided (merged) in the
transformed version by applying loop fission (loop fusion); in this
work, we target only those programs whose recurrences undergo
no such loop fusion/fission.

The equivalence checking technique for handling recurrences
is illustrated with an example taken from [11]. Let us consider
the pair of equivalent programs involving recurrences as shown



S1: A[0] = In[0];
for (i = 1; i < N; ++i) {
if (i%2 ==0) {

S2: B[i] = £(In[i]);
83: C[i] = g(A[i-11);
} else {
S1: A[0] = In[0]; S4: B[i]l = g(A[i-1]1);
for (i = 1; i < N; ++i) { S5: C[i] = £(In[il);

S2: A[i] = £(In[i]) +

}
g(ALi-11); S6: A[il = B[il + C[il;

S3: Out = A[N-1]; S7: Out = A[N-1];

(a) Original program. (b) Transformed program.

Figure 1: An example of two programs containing recurrences.

F(In,A1) = f(In) + g(A1)
(a) Original ADDG.

(b) Transformed ADDG.

(a) Original ADDG. (b) Transformed ADDG.
Figure 2: ADDGs for the programs given in Fig.

in Fig. m To remove the cycle corresponding to Fig. ma), we
introduce a new (not already defined) array variable Al to replace
the array A occurring on the right hand side of the statement S2.
Similarly, we replace A with the same array variable Al in the
statements S3 and S4 of the program given in Fig. Ekb) to remove
the cycles in its corresponding ADDG. The modified ADDGs,
without the cycles, are shown in Fig. |Zl Note that application of
loop transformations, such as loop reversal in the present example,
will result in a non-valid (and thus non-equivalent) program —
the equivalence checking procedure will not be able to detect this
mistake once the new array element A1 has been introduced. Hence,
we need the first restriction mentioned above. The equivalence of
the two ADDGs given in Fig. [2Ja) and Fig. 2|b) can be established
in the following manner. First of all, scalar variables such as Out are
treated as array variables of unit dimension, i.e., Out is considered
as Out [0], also note that the iteration domains for statements such
as S1 and 83 in Fig. [T[a) are trivial. Showing equivalence of the
acyclic subgraphs of the ADDGs, denoted by red and green arrows
in Fig. |ZL is straightforward by the method of [3]. Now, let us
concentrate on the blue portions of the two ADDGs. Here, we
establish the data transformation of A in terms of In and A1; since
the nodes corresponding to newly introduced array variables such
as, A1, will not have any outgoing edges, they are treated as input
arrays while checking equivalence of the recurrences.

The mapping representing how the members of the output array
out are related to those of the input arrays ¢n1 and in2 is denoted

by Mout,{in1,in2y While the corresponding data transformation is
denoted by Tout,{in1,in2); the detailed formalism can be found
in [S]. For the ADDG shown in Fig. Pfa), Mam = {[ij —
[(]]1 <4< N}, Maar ={[i] - [i—11]1< i< N}
and r4 (rn,a1y = f(In) + g(Al). For the ADDG shown in
Fig.RIb), M 1n = {[i] = [i] | Ik € Z(i =2 x k),1 <i < N},
Mecar ={[{]] =2 [i—1] |3k € Z(i =2xk),1 <i< N},
Mpai={[f| = [i—1]|FkeZi=2xk+1),1<i< N},
Mem ={[i] = [i]| Ik €Zi=2xk+1),1 <i< N}
Map ={[i] - [1]|1<i<N})Mac=A{[]—=1[]]1<
i < N}. Now, we find TS’){M’AI} = f(In) + g(A1) for the
domain {[i] | 3k € Z(i = 2 x k),1 < i < N} and rfff{mym} -
f(In) + g(A1) for the domain {[i] | Ik € Z(i =2 x k+1),1 <
i < N}; note that our normalization technique knows that + is
a commutative operation. Since the data transformation is same
in both the domains, we can combine them and thus we arrive at
the same mappings and data transformation as that of Fig. Pfa).
Therefore, we conclude that the ADDGs of Fig. |Z| and in turn, the
programs of Fig.[I] are equivalent.

4. Conclusion and future work

This work, for the first time, provides a unified equivalence check-
ing framework for handling loop transformations and arithmetic
transformations along with recurrences. We also aim to handle so-
phisticated recurrences that cannot be verified using the method
of [[11] by following a template matching procedure (which could
not be covered here due to page limitation). The method described
here has been implemented, other enhancements are being incor-
porated.

References

[1] Y. Bouchebaba, B. Girodias, G. Nicolescu, E. M. Aboulhamid, B. Lav-
igueur, and P. G. Paulin. MPSoC memory optimization using program
transformation. ACM Trans. Design Autom. Electr. Syst., 12(4), 2007.

[2] 1. Kadayif, M. T. Kandemir, G. Chen, O. Ozturk, M. Karakdy, and
U. Sezer. Optimizing array-intensive applications for on-chip multi-
processors. IEEE Trans. Parallel Distrib. Syst., 16(5):396—411, 2005.

[3] C. Karfa, K. Banerjee, D. Sarkar, and C. Mandal. Equivalence check-
ing of array-intensive programs. In ISVLSI, pages 156-161, 2011.

[4] C. Karfa, K. Banerjee, D. Sarkar, and C. Mandal. Experimentation
with SMT solvers and theorem provers for verification of loop and
arithmetic transformations. In I-CARE, pages 3:1-3:4, 2013.

[5] C. Karfa, K. Banerjee, D. Sarkar, and C. Mandal. Verification of loop
and arithmetic transformations of array-intensive behaviours. /EEE
Trans. on CAD of ICS, 32(11):1787-1800, 2013.

[6] B. Landwehr and P. Marwedel. A new optimization technique for
improving resource exploitation and critical path minimization. In
ISSS, pages 65-72, 1997.

[7] D. Sarkar and S. De Sarkar. A theorem prover for verifying iterative
programs over integers. IEEE Trans Software. Engg., 15(12):1550—
1566, 1989.

[8] K. C. Shashidhar. Efficient Automatic Verification of Loop and Data-
flow Transformations by Functional Equivalence Checking. PhD the-
sis, Katholieke Universiteit Leuven, 2008.

[9] K. C. Shashidhar, M. Bruynooghe, F. Catthoor, and G. Janssens. Func-
tional equivalence checking for verification of algebraic transforma-
tions on array-intensive source code. In DATE, pages 1310-1315,
2005.

[10] S. Verdoolaege, G. Janssens, and M. Bruynooghe. Equivalence check-
ing of static affine programs using widening to handle recurrences. In
CAV, pages 599-613, 2009.

[11] S. Verdoolaege, G. Janssens, and M. Bruynooghe. Equivalence check-
ing of static affine programs using widening to handle recurrences.
ACM Trans. Program. Lang. Syst., 34(3), 2012.



	Problem statement
	Literature survey
	Extension of the equivalence checking scheme to handle recurrences
	Conclusion and future work

